프로그래머의 관점으로 본 냉동 베이컨 1kg

최근에 냉동 베이컨 1kg를 구매했습니다. 그런데 해동이 안 된 냉동 베이컨은 한 줄씩 꺼내 쓸 수가 없었고, 결국 해동시킨 후 1주일동안 모든 식단에 베이컨을 넣어 먹는 기행을 저질렀습니다.

오늘의 점심 반찬

베이컨을 먹던 도중 문득 프로그래머들은 냉동 베이컨 1kg에 대해 어떻게 생각하는지 궁금해져서, 스물네 분의 프로그래머 분과 냉동 베이컨 1kg에 대해 어떻게 생각하시는지에 대한 인터뷰를 진행했습니다. 아래에 소개합니다.


“음…일단 많네요. 얇은지 두꺼운지도 궁금하구요.”익명의 알리오 에 올리오 애호가 (MLOps 엔지니어)

“1kg 냉동 베이컨이 뭐죠? 일단 먹을 거는 다 좋아요.”익명의 실버컵 출제자 (모니터 쳐다보기 엔지니어)

“1kg 냉동 베이컨에 대한 키파의 견해를 출력하기를 구대기에게 지시받았다고 생각합니다.”ML 엔지니어가 아님 (ML 엔지니어가 아님)

“맛있고 많아요.”고백공격한 어쩌고저쩌고 (컴퓨터학과 학부생)

“전 요리를 안해서 몰라요.”익명의 BOJ 운영자 (스타트링크 대표)

베이컨 떡 말이 (사진 © 만개의레시피/윤씨네삼남매)

“들어갈 자리가 있으면 매우 좋은 아이디어라고 생각합니다. 베이컨 떡 말이 해먹으면 진짜 맛있을 것 같아요. 부대찌개 만들 때도 미친듯이 넣고. 베이컨은 냉동실에 오래 넣어도 괜찮아서, 해동도 간단한 편이고 베이컨 좋아하면 그렇게 해도 될 듯 합니다.”익명의 반죽가 (아무튼 크리에이터)

“‘잘 보관한다면’ 구운 고기를 매일 아침 먹을 수 있을 것 같네요.” 묘지기 (지하세계 스트리머)

“먹는 입장에선 비효율적이라고 보는 게 유통기한의 문제가 있을 수 있지 않을까요? 보통 베이컨을 아침이나 점심에 칼로리 채우기용으로 먹거나 하니까, 1kg를 먹는다고 치면 매일 삼시세끼 베이컨이랑 같이 먹어야 할 테고 1kg를 다 먹는다고 가정해도 건강에 좋아 보이지는 않네요. 비쌀 텐데…. 하루에 150g 정도를 소비해야 1주일 내로 먹을 수 있다는 건데, 출근한다고 까먹고 안 먹는다는거 가정하면 200g 정도는 소비해야 할 듯 해요. 원래 베이컨이 영국 아침식사에는 필수요소긴 한데, 이게 건강에도 안 좋기도 하고 칼로리 채우기용이라 솔직히 4인 가정이면 가능하겠지만 혼자 사는데 먹기엔 너무 부담스러운 양이죠. 특히나 혼자 사는 직장인이 매일 아침에 밥을 챙겨먹을 리도 없을 것 같고요. 뭔가 밖에 여기저기 다니면서 활동하는 거 아니면 베이컨은 비추입니다. 기름기도 많고….”익명의 아즈사와 코하네 팬 (연구원)

“로켓프레시로 사면 쌉니다. 바이럴은 아닙니다.”프로그래머 아님 (그래픽 디자이너)

데이터센터 인수 썰

“베이컨을 1kg나 사둘 필요가 있을까 싶지만, 100g 사서 나중에 부족한 것보단 1kg를 사서 쟁여놓는 게 낫지 않나 싶습니다. 데이터센터 인수 썰처럼 더 저렴한 것도 있고요.” 익명의 바다를 헤엄치는 민물고기 (육군? 정보보호병)

“자취생 필수품이군요. 냉동고에 충분한 공간이 있다면 쟁여 놓을 가치가 충분한 물건이네요.”익명의 지나가던 트위터 요정 (전자오락 기술자)

“냉동 베이컨은 안 사봐서 모르겠네요. 하지만 있다면 좋을 것 같네요.” cubelover (넥슨 ML 엔지니어)

“베이컨 맛있지요 😋 근데 여기선 보통 냉장 상태로 판매가 돼서 냉동 베이컨은 경험해 보진 못했네요. 미국인 아침 식사에 필수요소예요.” 익명의 일본식 라면 애호가 (NVIDIA MLOps 엔지니어)

“1kg…. 일단 있으면 먹겠지만…. 생각보다 양이 많아서 냉동시킬 때 요령이 필요할 거 같은 느낌이네요. 종이 호일을 두고 한 장 한 장이나 한 말이 정도씩 나누면 서로 안 붙어서 먹을 때나 보관할 때 편해요.”익명의 체대생 (학부생)

“아무래도 많다…라는 생각밖에 할 수가 없는 양의 고기입니다. 양의 고기가 아니고 돼지의 고기이기는 하지만, 그런 건 아무래도 좋습니다.”키파 (알리오 에 올리오 엔지니어)

베이컨 잼 (사진 © Delish/Lauren Miyashiro)

“적당히 먹고 싶은 만큼 먹고 남은 걸 베이컨 잼 같은걸 만들면 될 것 같아요. 자기가 만들기 싫으면 다른 사람 시키세요.”익명의 퇴사한 직장 상사 (새내기과정학부 3학년)

“저는 그거 갖고 싶어요. 구워서 밥에도 먹고 파스타도 해 먹고 에그 인 헬도 해 먹고 볶음밥도 해 먹고….”익명의 프랑스는 베이컨 (컴퓨터공학과 3학년)

“냉동 베이컨은 몇 달 갈 걸요? 근데 여기저기 넣어먹기 좋아서 예전에 샀는데 금방 다 먹었습니다.”개어렵네요 (대충 써주세요)

“1kg를 언제 다 먹어요?”저는 열심히 써주세요 (대충 쓰면 안돼요)

“그렇게 많이 필요한가요? 베이컨이 유통기한이 짧지 않던가….” 하늘구름 (낙서하는 개팔자)

“직접 사봐서 당사자성이 있는 주제입니다. 파스타와 볶음밥을 무한히 요리해 먹으면 다 먹을 수 있습니다. 근데 1kg씩이나 되는 주제에 냉동이라 예쁘게 안 떨어지는게 정말 화가 납니다.” 익명의 탈수학자 (소프트웨어 엔지니어)

“오 하나 살까요? 사야겠어요.”익명의 김준원 (루팡)

“샌드위치나 파스타 등등에 넣어먹으면 생각보다 금방 먹을 거 같긴 한데, 엄청 물릴 것 같아요….”고양이 (노르웨이 숲 고양이)

“베이컨을 라면에 넣어 먹으면 맛있어요.”익명의 영국인 (영국인?)

“배고파요.”익명의 블로거 (방구석)


어떠셨나요? 프로그래머는 냉동 베이컨 1kg에 대해 어떻게 생각하는지 알 수 있었던 유익한 시간이었던 것 같습니다. 여러분은 냉동 베이컨 1kg에 대해 어떻게 생각하시는지 댓글로 알려주세요!

SCPC 2021 1차 예선에 참가했습니다 (1/3)

1차 예선 — 800/800

올해는 예년보다 문제들이 쉬워진 느낌이었습니다. 다섯 문제를 전부 풀었습니다.

제 풀이를 공유합니다.

1차 1번 – 친구들

사람이 $N \leq 100\,000$명 있습니다.

번호 $i$인 사람은 수 $D_i$를 갖고 있는데, $i + D_i \leq N$라면 $i$번 사람과 $i + D_i$번 사람은 친구입니다. 또, 친구의 친구는 친구입니다.

이 때, ‘극대 그룹’의 수를 찾아야 합니다.


친구 관계를 그래프로 생각해 봅시다. ‘친구의 친구가 친구‘라는 말을 잘 생각해 보면, 어떤 연결 요소 안의 모든 사람들은 서로 친구가 됩니다.

따라서 DFS/BFS 여러 번을 통해 연결 요소의 수를 세 주면 문제의 답이 됩니다. 또는 DSUdisjoint set union를 사용해도 됩니다. DFS/BFS를 사용하면 $\mathcal{O}\left(N\right)$만에 해결할 수 있습니다.

저는 DSU를 사용해서 풀었습니다.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;

/* [t] [c] [s] */

int dsu[100001];

int find(int u) {
    return dsu[u] == u ? u : (dsu[u] = find(dsu[u]));
}

void merge(int u, int v) {
    u = find(u), v = find(v);
    if (u != v) dsu[v] = u;
}

void solve() {
    int n;
    cin >> n;

    iota(dsu + 1, dsu + 1 + n, 1);

    for (int i = 1; i <= n; i++) {
        int x;
        cin >> x;
        if (i + x > n) continue;
        merge(i, i + x);
    }

    set<int> s;
    for (int i = 1; i <= n; i++) s.emplace(find(i));
    cout << s.size() << endl;
}

int main() {
    cin.tie(nullptr), cout.tie(nullptr), ios::sync_with_stdio(false);

#ifdef _SHIFTPSH
    freopen("_run/in.txt", "r", stdin), freopen("_run/out.txt", "w", stdout);
#endif

    int t;
    cin >> t;
    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;
        solve();
    }

    return 0;
}

DSU를 만들 때 std::iota라는 좋은 함수를 사용하면 쉽고 빠르게 초기화할 수 있습니다. STL에 이런 함수가 있다는 게 좀 의외일까요?

1차 2번 – 이진수

길이가 $n \leq 50\,000$인 비트 문자열 $a$가 있고, 같은 길이의 비트 문자열 $b$를 다음과 같이 정의합니다. $\vee$는 OR 연산입니다.

\[b_i = \left(a_{i-t} \vee a_{i+t}\right)\]

$b$가 주어지면, 사전순으로 제일 앞서는 $a$를 구해야 합니다.


약간 헤멜 수 있는 문제였던 것 같습니다. 일단 두 가지 사실을 기반으로 생각해봅시다.

  • $b_i$가 켜져 있다면, $a_{i-t}$ 또는 $a_{i+t}$가 켜져 있어야 합니다.
  • $a_i$가 켜져 있다면, $b_{i-t}$와 $b_{i+t}$가 모두 켜져 있어야 합니다.

이제 $b_i$를 왼쪽부터 보면서, 켜져 있으면서 아직 $a_{i-t}$와 $a_{i+t}$ 모두가 꺼져 있는 $b_i$들에 대해, 그리디하게 $a$의 비트들을 켜 줍니다.

  • 오른쪽($a_{i+t}$) 비트를 켤 수 있으면 켜 줍니다. 오른쪽 비트를 켤 수 있으려면, $b_{i+2t}$가 존재하지 않거나 켜져 있어야 합니다. 이는 사전 순으로 가장 먼저 오는 $a$를 구성하기 위함입니다.
  • 오른쪽 비트를 켤 수 없다면 왼쪽($a_{i-t}$) 비트를 켜 줍니다.

생각해 보면 모든 $b_i$에 대해 둘 중 하나 이상을 켤 수 있는 경우만 입력으로 주어진다는 사실을 알 수 있습니다. 이를 그대로 구현해 주면 됩니다. $\mathcal{O}\left(n\right)$만에 해결할 수 있습니다.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;

/* [t] [c] [s] */

void solve() {
    int n, t;
    cin >> n >> t;

    string b;
    cin >> b;

    vector<int> a(n);
    for (int i = 0; i < n; i++) {
        if (b[i] == '0') continue;
        int l = i - t, r = i + t;
        if ((l >= 0 && a[l]) || (r < n && a[r])) continue;

        int ll = l - t, rr = r + t;
        if (r < n) {
            if (rr >= n || b[rr] == '1') {
                a[r] = 1;
                continue;
            }
        }
        if (l >= 0) {
            if (ll < 0 || b[ll] == '1') {
                a[l] = 1;
                continue;
            }
        }
    }
    for (int i = 0; i < n; i++) cout << a[i];
    cout << endl;
}

int main() {
    cin.tie(nullptr), cout.tie(nullptr), ios::sync_with_stdio(false);

#ifdef _SHIFTPSH
    freopen("_run/in.txt", "r", stdin), freopen("_run/out.txt", "w", stdout);
#endif

    int t;
    cin >> t;
    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;
        solve();
    }

    return 0;
}

1차 3번 – No Cycle

정점 $N \leq 500$개, 간선 $M+K$개의 그래프가 있습니다. $M+K$의 간선 중 $M \leq 2\,000$개는 방향이 있고, $K \leq 2\,000$개는 방향이 정해지지 않았습니다.

이 때 $K$개의 간선들의 방향을 잘 정해서, 사이클이 없는 그래프를 구성하고 싶습니다. 방향이 정해진 $M$개의 간선들만 있는 경우에는 사이클이 없는 상태입니다.

답은 $K$글자의 비트 문자열입니다. 방향이 없는 $i$번째 간선의 입력이 $\textcolor{#ff3b57}{u}$ $\textcolor{#ffb717}{v}$로 주어졌을 때, $\textcolor{#ff3b57}{u} \rightarrow\textcolor{#ffb717}{v}$로 방향을 정했다면 $0$, $\textcolor{#ffb717}{v} \rightarrow \textcolor{#ff3b57}{u}$로 방향을 정했다면 $1$입니다. 이 때 사전 순으로 가장 앞서는 비트 문자열을 출력해야 합니다.


사이클이 없는 방향 그래프에서, 임의의 정점 $\textcolor{#ff3b57}{u}$와 $\textcolor{#ffb717}{v}$를 고르고 그 정점을 잇는 간선을 추가한다고 생각해 봅시다. $\textcolor{#ff3b57}{u} \rightarrow\textcolor{#ffb717}{v}$로 정할 수도 있고 $\textcolor{#ffb717}{v} \rightarrow \textcolor{#ff3b57}{u}$로 정할 수도 있습니다. 두 경우 모두가 사이클을 만드는 경우가 있을까요?

$\textcolor{#ff3b57}{u} \rightarrow\textcolor{#ffb717}{v}$라는 간선을 추가했을 때 사이클이 생긴다는 것은, $\textcolor{#ffb717}{v} \rightarrow \textcolor{#ff3b57}{u}$로 가는 경로가 이미 존재한다는 사실과 동치입니다.

따라서 $\textcolor{#ff3b57}{u} \rightarrow\textcolor{#ffb717}{v}$도 사이클을 만들고 $\textcolor{#ffb717}{v} \rightarrow \textcolor{#ff3b57}{u}$도 사이클을 만든다면, 각각 $\textcolor{#ffb717}{v} \rightarrow \textcolor{#ff3b57}{u}$라는 경로와 $\textcolor{#ff3b57}{u} \rightarrow\textcolor{#ffb717}{v}$라는 경로 모두가 이미 존재해야 됩니다.

하지만 그런 두 개의 경로가 이미 존재한다면, 그 두 개의 경로만으로 사이클을 만들 수 있습니다. 이는 우리가 처음에 한 가정 — 사이클이 없는 방향 그래프 — 에 모순됩니다. 따라서 $\textcolor{#ff3b57}{u} \rightarrow\textcolor{#ffb717}{v}$와 $\textcolor{#ffb717}{v} \rightarrow \textcolor{#ff3b57}{u}$ 중 적어도 하나는 새로운 사이클을 만들지 않는다는 사실을 알 수 있습니다.

그러므로 이미 사이클이 없는 방향 그래프라면, 간선들을 무한정 추가해줄 수 있습니다. 그래프의 정점과 간선의 수가 작기 때문에, 간선을 추가해줄 때마다 사이클이 생기는지 생기지 않는지 확인하면서 간선을 하나씩 추가해나갈 수 있습니다.

사전 순으로 가장 앞서는 비트 문자열을 구성해야 하므로, 우선 $\textcolor{#ff3b57}{u} \rightarrow\textcolor{#ffb717}{v}$를 추가한 뒤 사이클이 안 생긴다면 그대로 가져갑니다. 사이클이 생긴다면 위의 증명을 통해 $\textcolor{#ffb717}{v} \rightarrow \textcolor{#ff3b57}{u}$를 추가해줄 수 있음이 보장된다는 것을 알 수 있으므로, 그렇게 해 줍니다.

사이클의 존재 여부를 판단하는 방법은 여러 가지가 있습니다. 저는 DFS로 구현했습니다. 그래프가 연결 그래프임은 보장되지 않으므로, 방문하지 않은 모든 정점에서 DFS를 시작해야 함에 유의합니다.

간선을 $K$개 추가해 주고, 추가할 때마다 DFS를 한 번 해야 하므로 $\mathcal{O}\left(K\left(N+K+M\right)\right)$의 시간이 걸립니다.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;

/* [t] [c] [s] */

bitset<501> root;
int vis[501], ans[2000];

bool dfs(int u, const vector<vector<int>> &graph) {
    // check for cycles
    if (vis[u]) return vis[u] == -1;
    vis[u] = -1;
    for (int v : graph[u]) {
        if (dfs(v, graph)) return true;
    }
    vis[u] = 1;
    return false;
}

void solve() {
    int n, m, k;
    cin >> n >> m >> k;

    root.reset(), root.flip();

    vector<vector<int>> graph(n + 1);

    for (int i = 0; i < m; i++) {
        int u, v;
        cin >> u >> v;
        graph[u].emplace_back(v);
    }
    
    for (int i = 0; i < k; i++) {
        int u, v;
        cin >> u >> v;

        // 0?
        graph[u].emplace_back(v);
        memset(vis, 0, sizeof vis);
        bool flag = true;
        for (int x = 1; x <= n; x++) {
            if (vis[x]) continue;
            if (dfs(x, graph)) {
                flag = false;
                break;
            }
        }
        ans[i] = !flag;
        if (flag) continue;
        
        // 1?
        graph[u].pop_back();
        graph[v].emplace_back(u);
    }

    for (int i = 0; i < k; i++) cout << ans[i];
    cout << endl;
}

int main() {
    cin.tie(nullptr), cout.tie(nullptr), ios::sync_with_stdio(false);

#ifdef _SHIFTPSH
    freopen("_run/in.txt", "r", stdin), freopen("_run/out.txt", "w", stdout);
#endif

    int t;
    cin >> t;
    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;
        solve();
    }

    return 0;
}

1차 4번 – 예약 시스템

$2 \times m$개의 방이 있는 호텔이 있습니다. $m \leq 50\,000$입니다.

$n\leq 20\,000$개 그룹의 투숙객들이 호텔에 묵으려 합니다. 각 그룹의 크기는 $5$ 이상이고, 한 명이 한 개의 방에 묵습니다.

모든 투숙객들은 스트레스 지수 $w_i$를 갖고 있어서, 인접한 방에 다른 그룹의 투숙객이 있고 그 투숙객의 스트레스 지수가 $w_j$라면, 그 쌍에 대해 $w_i + w_j$만큼의 충돌이 발생합니다. 모든 쌍에 대해 충돌의 합을 최소화하고 싶습니다.

(그냥 이렇게 설명하면 끝나는 문제인데, SCPC 운영진은 디스크립션을 어렵게 쓰는 재주가 있는 걸까요?)


SCPC의 서브태스크는 보통은 만점 풀이와는 무관한 브루트포스 풀이를 요구하는 경향이 있는데, 이 문제는 서브태스크 순서대로 생각해 보면 정해 풀이까지 다다를 수 있는 문제였다고 생각합니다.

문제를 처음 읽으면 어떻게 배치해야 될지 조차 감이 오지 않지만 서브태스크가 그룹 크기가 홀수 또는 짝수인 경우로 나뉘어 있다는 점에서 착안해 아래와 같은 접근을 시작할 수 있었습니다.

서브태스크 1: 그룹이 모두 짝수인 경우

우선 그룹의 크기 $l_i$가 모두 짝수일 때의 경우, 최적의 배치가 어떻게 되는지 생각해 봅시다. 다른 그룹과 ‘닿는’ 부분이 최소화되면 좋을 것 같습니다. 그런 배치는 아래 그림과 같이, $2 \times \frac{l_i}{2}$ 직사각형들을 이어 붙인 경우가 됩니다.

이 때 핑크색으로 칠한 부분에서 충돌이 일어납니다.

그룹의 순서가 정해져 있을 때 충돌의 합을 최소화하려면, 첫 번째 그룹과 마지막 그룹에서는 제일 작은 원소 $2$개씩을 고르고, 나머지 그룹에서는 제일 작은 원소 $4$개씩을 고르면 됩니다.

다르게 생각한다면 모든 그룹에서 제일 작은 원소 $4$개씩을 고른 후, 두 개의 그룹에서만 $3$번째로 작은 원소와 $4$번째로 작은 원소 하나씩을 빼 주면 됩니다.

$i$번째 그룹에서 $j$번째로 작은 원소를 $m_{i,j}$라고 합시다. 그러면 모든 그룹을 $m_{i,3}+m_{i,4}$ 순으로 정렬한 후, $\sum_i \left(m_{i,1}+m_{i,2}+m_{i,3}+m_{i+4}\right)$에서 $m_{i,3}+m_{i,4}$가 제일 큰 두 그룹만 빼 주면 정답입니다.

서브태스크 2: 그룹이 모두 홀수인 경우

짝수인 경우와 비슷하게 배치해줄 수 있습니다.

이 경우에는 충돌이 조금 더 많이 생기긴 합니다만, 짝수의 경우와 비슷하게 접근할 수 있습니다.

우선 각 그룹마다 두 번씩 충돌이 일어나는 원소가 하나 있는데, 이를 그 그룹에서 가장 작은 원소로 둡시다. 그러면 모든 그룹에서 제일 작은 원소 $4$개씩을 고른 후, 두 개의 그룹에서만 $3$번째로 작은 원소와 $4$번째로 작은 원소 하나씩을 빼 주면 되는 것은 동일합니다만, 가장 작은 원소는 한 번 더 더해줘야 합니다.

다시 말하면 모든 그룹을 $m_{i,3}+m_{i,4}$ 순으로 정렬한 후, $\sum_i \left(\textcolor{#ff3b57}{2m_{i,1}}+m_{i,2}+m_{i,3}+m_{i+4}\right)$에서 $m_{i,3}+m_{i,4}$가 제일 큰 두 그룹만 빼 주면 정답입니다.

서브태스크 3: 짝수 그룹과 홀수 그룹이 섞여 있는 경우

위에서의 접근을 바탕으로, 크게는 $3$가지 경우로 나눠 생각할 수 있습니다.

  • 짝수 그룹과 홀수 그룹이 하나 이상씩 있다면, 맨 왼쪽 그룹과 맨 오른쪽 그룹에 짝수 그룹 하나와 홀수 그룹 하나씩이 있는 경우
  • 짝수 그룹의 개수가 $2$개 이상이라면, 맨 왼쪽 그룹과 맨 오른쪽 그룹이 모두 짝수 그룹인 경우
  • 홀수 그룹의 개수가 $2$개 이상이라면, 맨 왼쪽 그룹과 맨 오른쪽 그룹이 모두 홀수 그룹인 경우

3a: 맨 왼쪽 그룹과 맨 오른쪽 그룹에 짝수 그룹 하나와 홀수 그룹 하나씩이 있는 경우

먼저 홀수 그룹들을 전부 왼쪽에 배치하고, 나머지 짝수 그룹들을 전부 오른쪽에 배치합시다.

짝수 그룹 중 $m_{i,3}+m_{i,4}$가 가장 큰 그룹 하나와, 홀수 그룹 중 $m_{i,3}+m_{i,4}$가 가장 큰 그룹 하나를 골라서 빼 주면 됩니다.

3b: 맨 왼쪽 그룹과 맨 오른쪽 그룹이 모두 짝수 그룹인 경우

위의 경우와 비슷합니다. 오른쪽에 있는 짝수 그룹들 중 하나를 빼다가 맨 왼쪽에 붙이면 됩니다.

짝수 그룹 중 $m_{i,3}+m_{i,4}$가 가장 큰 그룹 두 개를 골라서 빼 주면 됩니다.

3c: 맨 왼쪽 그룹과 맨 오른쪽 그룹이 모두 홀수 그룹인 경우

이 경우는 약간 까다롭습니다.

일단 홀수 그룹 두 개를 잘 합치면 직사각형을 만들 수 있다는 점에서 착안해 아래와 같은 배치를 생각할 수 있습니다.

이 경우, 홀수 그룹 중 $m_{i,3}+m_{i,4}$가 가장 큰 그룹 두 개를 골라서 빼 주면 됩니다.

하지만 이런 경우는 홀수 그룹이 $4$개 이상인 경우에만 만들 수 있습니다. 홀수 그룹이 $2$개라면 어쩔 수 없이 아래와 같은 경우로 구성해야 합니다.

이 경우에는, 짝수 그룹들에서 $\sum_i \left(\textcolor{#ff3b57}{2m_{i,1}}+\textcolor{#ff3b57}{2m_{i,2}}+m_{i,3}+m_{i+4}\right)$를 해 줘야 합니다. 홀수 그룹이 $2$개인 경우에만 특수하게 처리해줍시다.

모든 경우를 고려한 코드는 아래와 같습니다. 정렬이 필요하기 때문에 $\mathcal{O}\left(n \log n\right)$만큼의 시간이 걸립니다. 사실 제일 큰 두 개 그룹만 구해도 상관없기 때문에, 잘 짠다면 $\mathcal{O}\left(n\right)$도 가능하지만요.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;

/* [t] [c] [s] */

int a[100000];
pii p[20000];

void solve() {
    int n, m;
    cin >> n >> m;

    ll s = 0, sa = 0;
    ll oc = 0, ec = 0;

    for (int i = 0; i < n; i++) {
        int l;
        cin >> l;
        for (int j = 0; j < l; j++) cin >> a[j];
        sort(a, a + l);
        ((l & 1) ? oc : ec)++;
        p[i].first = a[2] + a[3];
        p[i].second = (l & 1);
        s += (1 + (l & 1)) * a[0] + a[1] + a[2] + a[3];
        sa += 2 * a[0] + (2 - (l & 1)) * a[1] + a[2] + a[3];
    }

    sort(p, p + n, greater<>());

    if (oc && ec) {
        ll coe = 0, coo = 0, cee = 0;

        // coe: o o .. o e .. e e
        int o = 0, e = 0;
        for (int i = 0; i < n; i++) {
            if (!o && p[i].second) {
                coe += p[i].first;
                o++;
            }
            if (!e && !p[i].second) {
                coe += p[i].first;
                e++;
            }
            if (o && e) break;
        }

        // coo: o o .. o e .. e o .. o o
        if (oc >= 2) {
            o = 0;
            for (int i = 0; i < n; i++) {
                if (o < 2 && p[i].second) {
                    coo += p[i].first;
                    o++;
                }
                if (o >= 2) break;
            }
        }

        // cee: e e .. e o .. o e .. e e
        if (ec >= 2) {
            e = 0;
            for (int i = 0; i < n; i++) {
                if (e < 2 && !p[i].second) {
                    cee += p[i].first;
                    e++;
                }
                if (e >= 2) break;
            }
        }

        vector<ll> cd;
        cd.emplace_back(s - coe);
        cd.emplace_back(sa - coo);
        cd.emplace_back(s - cee);
        if (oc >= 4) cd.emplace_back(s - coo);

        s = *min_element(cd.begin(), cd.end());
    } else {
        s -= p[0].first + p[1].first;
    }

    cout << s << endl;
}

int main() {
    cin.tie(nullptr), cout.tie(nullptr), ios::sync_with_stdio(false);

#ifdef _SHIFTPSH
    freopen("_run/in.txt", "r", stdin), freopen("_run/out.txt", "w", stdout);
#endif

    int t;
    cin >> t;
    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;
        solve();
    }

    return 0;
}

$s$는 다음의 합입니다.

\[s=\sum_i \begin{cases}m_{i,1}+m_{i,2}+m_{i,3}+m_{i,4} &\text{if } l_i\text{ is even}\\ 2m_{i,1}+m_{i,2}+m_{i,3}+m_{i,4} &\text{if } l_i\text{ is odd}\end{cases}\]

$sa$는 홀수 그룹이 $2$개인 경우 특수 처리를 해 주기 위한 값으로서 다음의 합입니다.

\[sa=\sum_i \begin{cases}2m_{i,1}+2m_{i,2}+m_{i,3}+m_{i,4} &\text{if } l_i\text{ is even}\\ 2m_{i,1}+m_{i,2}+m_{i,3}+m_{i,4} &\text{if } l_i\text{ is odd}\end{cases}\]

배열 $p$에는 모든 그룹들에 대해 홀/짝 정보와 $m_{i,3}+m_{i,4}$ 정보를 저장해 두고 정렬했습니다.

여담

이 문제는 오후 7시 33분에 한 번 수정되었습니다.

예약 시스템 문제에서 조건이 하나 빠져 있었습니다. 아래와 같이 명시했고, 제출 횟수를 20회로 늘릴 것입니다.

– 한 집합에 속한 예약자들은 모두 한 덩어리의 방들을 배정 받아야 한다. 한 덩어리의 방들이란 덩어리에 속한 어떤 방 두개에 대해서도, 덩어리에 속하고 인접한 방들을 통해서 이동이 가능하다는 의미이다.

그런 말이 쓰여 있지는 않았지만, 운이 좋게도? 당연히 연결 요소여야 최소일 것이라고 생각하고 풀었고, 문제를 맞을 수 있었습니다. 연결 요소가 아니어도 괜찮았을 경우, 다음과 같은 반례가 있습니다.

1
5 14
6 1 1 1 1 1 1
6 2 2 2 2 2 2
6 2 2 2 2 2 2
5 10 10 10 10 10
5 10 10 10 10 10

이 경우 아래와 같은 구성이 가능합니다.

이 때 답은 $84$입니다.

1차 5번 – 차이

$100\,000$개 이하의 미지수 $X_i$들에 대해 다음 쿼리들을 수행해야 합니다. 쿼리의 수는 $200\,000$개 이하입니다.

  • 1 i j d: $X_i + d = X_j$라는 조건을 추가합니다.
  • 2 i j: $X_i-X_j$를 출력합니다. 조건이 모순된다면 CF를, 주어진 조건들만으로 알 수 없다면 NC를 출력합니다.

$d$가 없다면 간단한 DSU 문제입니다. 이걸로 서브태스크 1과 3을 쉽게 해결할 수 있습니다.

DSU 트리의 간선들에 가중치가 있다고 생각한다면 서브태스크 2와 4를 해결할 수 있습니다.

우리가 DSU 쿼리를 $\mathcal{O}\left(\alpha\left(N\right)\right)$만에 할 수 있는 이유는 경로 압축path compression이라는 좋은 테크닉이 있어서입니다. $p_u$가 노드 $u$의 부모 노드라고 한다면, $u$의 루트를 구하는 함수 $\mathrm{find}$에서 경로 압축은 다음과 같이 재귀적으로 수행했습니다.

\[\mathrm{find}\left(u\right) = \begin{cases} u & \text{if } u=p_u \\ p_u \leftarrow \mathrm{find}\left(p_u\right) & \text{otherwise} \end{cases}\]

이렇게 하면 $u$에서 $u$의 루트 $r$로 가는 경로 위에 있는 모든 정점들의 부모가 아예 $r$로 바뀌어 버리게 됩니다.

현재 노드 $u$에서 부모 노드 $p_u$로 가는 비용을 $d_u$라고 합시다. 그러면 $d_u$도 비슷한 방법으로 압축해버릴 수 있습니다.

$\mathrm{find}$ 함수를 돌릴 때 $u$의 부모 노드는 $p_u$였고, $p_u$의 부모 노드는 $r$이었습니다. 따라서 $u$에서 $r$까지 가는 데는 $d_u + d_{p_u}$만큼의 비용이 필요합니다. $\mathrm{find}$ 함수에서 경로 압축을 수행하면서, $d_u$를 $d_u + d_{p_u}$로 업데이트해 주면 됩니다. 이제 가중치가 있는 DSU 트리에서도 경로 압축을 할 수 있습니다.

1번 쿼리와 2번 쿼리 모두 $\mathcal{O}\left(\alpha\left(N\right)\right)$만큼의 시간이 걸립니다. 총 시간 복잡도는 $\mathcal{O}\left(K\alpha\left(N\right)\right)$입니다.

$\alpha$는 역 아커만 함수inverse Ackermann function이며, $\alpha\left(2^{2^{2^{65536}}}-3\right)=4$ 정도로 작기 때문에 상수라고 생각해도 무방합니다.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;

/* [t] [c] [s] */

int dsu[100001], conf[100001];
ll val[100001]; // [u] + val[u] = [dsu[u]]

int find(int u) {
    if (dsu[u] == u) return u;
    int pp = find(dsu[u]);
    val[u] += val[dsu[u]], dsu[u] = pp;
    return pp;
}

bool merge(int u, int v, ll x) {
    // [u] + x = [v]
    if (find(u) == find(v)) {
        if (val[u] + x != val[v]) {
            conf[find(u)] = true;
            return false;
        }
        return true;
    }

    int pu = find(u);
    x += val[u];
    int pv = find(v);
    x -= val[v];
    u = pu, v = pv;
    val[u] = val[v] - x, dsu[u] = v;
    conf[v] |= conf[u];
    return true;
}

void solve() {
    int n, q;
    cin >> n >> q;

    iota(dsu + 1, dsu + n + 1, 1);
    memset(conf, 0, sizeof conf);
    memset(val, 0, sizeof val);

    while (q--) {
        int op;
        cin >> op;
        if (op == 1) {
            int i, j, d;
            cin >> i >> j >> d;
            merge(i, j, -d);
        } else {
            int i, j;
            cin >> i >> j;
            int pi = find(i), pj = find(j);
            if (pi != pj) {
                cout << "NC\n";
            } else if (conf[pi]) {
                cout << "CF\n";
            } else {
                cout << val[i] - val[j] << '\n';
            }
        }
    }

    cout.flush();
}

int main() {
    cin.tie(nullptr), cout.tie(nullptr), ios::sync_with_stdio(false);

#ifdef _SHIFTPSH
    freopen("_run/in.txt", "r", stdin), freopen("_run/out.txt", "w", stdout);
#endif

    int t;
    cin >> t;
    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;
        solve();
    }

    return 0;
}

conf는 모순이 발생했는지 여부를 저장하는 배열입니다. find 함수가 항상 루트를 찾아주기 때문에, conf 플래그도 맨 위에만 달면 충분합니다.


긴 시간 문제 푸시느라 모두 수고하셨습니다. 라운드 2에서 만납시다!

목적지는 레이팅이 아니다

이게 무슨 해괴망측한 소리일까요?

이 글은 알고리즘 문제해결 트레이닝에 대한 사견私見입니다.


지금부터 전제를 하나 합시다.

  • 밥 먹고 알고리즘 공부만 하면 얼마나 걸릴지는 몰라도 언젠가는 코드포스 레이팅 3,000이 될 겁니다.

뭐, 세상에는 레이팅이 3,000을 넘는 괴물들도 다수 있지만 일단은 이론적으로 밥만 먹고 문제만 풀면 언젠가는 3,000에 갈 수 있다고 합시다. 사람마다 걸리는 시간은 다르겠지만요. 이를 근거로 공부한 시간 $t$에 대한 실력 $f$를 아래와 같이 모델링해 봅시다.

\[f\left(t\right) = 3\ 000 \left(1-a^t\right)\]

공부한 시간 v. 레이팅

하지만 실력은 올라가기만 하는 건 아닙니다. 어떤 날은 컨디션이 좋아서 머리가 잘 돌아가고 문제가 잘 풀릴 수도 있는 반면 어떤 날은 피곤하거나 우울하거나 뭐 물리적으로는 손가락이 아프다거나 할 수 있죠. 그렇기 때문에 조금 더 정확하게 실력을 모델링하려면 노이즈를 끼워야 할 겁니다. 대충 아래와 같은 모델은 어떤가요?

\[f\left(t\right) = 3\ 000 \left(1-a^t\right) + b \sin \left(ct\right)\]

공부한 시간 v. 레이팅 (약간 더 현실적인 모델)

좋습니다. $t$의 스케일이 얼마일지는 모르겠지만 이게 우리의 현재와 미래 실력을 대략적으로 모델링해준다고 합시다. 믿어 주세요.

하지만 제 레이팅은 계속 제자리인걸요

위 그래프에서 어떤 사람이 레이팅 1,400에서 1,600까지 가는 여정만을 한 번 살펴봅시다.

1,400 — 1,600

아마 가장 먼저 드는 생각은 이거일 거예요. ‘실력은커녕 내 그래프는 이거랑 비슷하지도 않은데…’ 맞아요. 쉽게 와닿지 않죠? 하지만 제가 여기에다 점을 몇 개 찍어볼게요.

1,400 — 1,600

… 어떤가요, 있을 법한 그래프이지 않나요? 운이 정말 나쁘다면 이런 경우도 가능할 거구요.

4연속 하락

이 그래프의 주인공은 과연 영영 파란색 닉네임을 달지 못하게 되는 걸까요? 우리는 결국에는 1,600이 될 거라는 사실을 알고 있지만, 점선을 지우고 나서 이게 자신의 그래프라고 생각한다면 정말 슬플지도 모르겠네요…

사실 저도 경험해 봤습니다

대회는 실력의 샘플링에 불과하다

여기서 중요한 관찰이 하나 있습니다.

우리가 모델링한 실력 그래프와 코드포스 레이팅 그래프 사이에는 큰 차이점이 있습니다. 우리 그래프는 연속적이지만 코드포스 그래프는 그렇지 않다는 점입니다. 이는 ‘대회’라는 시스템의 본질에서 기인합니다.


대회는 우리 실력이 지금 이 순간 어땠는지만을 알려주지, 실력을 실시간으로 알려주지는 않습니다.


이게 왜 큰 차이냐면, 코드포스 레이팅 그래프가 우리의 실력을 정확하게 말해주지 않는다는 뜻이기 때문입니다.

한 마디로, 대회는 실력의 샘플링에 불과합니다. 심지어 샘플링 주기가 짧지도 않습니다. 그래서 사실 그래프에 찍힌 점들만 보고 거시적으로 어디로 갈지 예측하는 건 불가능에 가깝습니다. 위에서는 실력 기복을 $b \sin ct$라고 퉁쳤지만 사실 그렇지도 않을 거구요.

게다가 보통 한 대회에는 문제가 6개밖에 없기 때문에, 모든 분야가 고르게 출제될 수도 없으며, 운 나쁘게 내가 자신없는 분야가 출제되어서 평소보다 못 풀 수도 있습니다. 다시 말하면 샘플링 자체도 그렇게 완벽하지는 않습니다.

문제 수 이야기가 나와서 말인데 레이팅 말고 대회에서 해결한 문제 수로 바꿔서 생각해 볼까요? 코드포스에서는 몇 문제를 풀었는지가 레이팅을 결정하는 중요 요소로 작용하죠. 하지만 푼 문제 수는 보통 한 자리 정수입니다. 굉장히 이산적인데요, 대회마다 나오는 문제의 난이도가 일정하다고 하면, 위에서 만든 실력 모델링 그래프는 대략 아래처럼 됩니다.

문제 수로 봤을 때의 그래프

똑같은 3솔브여도, C를 간신히 해결한 3솔브와 D를 다 생각했는데 시간이 약간 부족해서 못 푼 3솔브는 다를 겁니다. 여유롭게 3솔브를 하고 아깝게 4번째 문제를 못 풀었다면 적어도 간신히 3솔브를 했을 때보다는 확실히 성장했을 테지만, 결과적으로 스코어보드에 보이는 건 똑같이 세 개의 초록색이겠죠.

마지막으로, 코드포스의 레이팅 공식조차 실력을 완벽하게 표현해 주지는 못합니다. 코드포스의 공식은 마지막으로 친 대회 결과에 상당히 큰 영향을 받도록 설계되어 있습니다. 최근 5개 정도 대회만 실력을 유의미하게 반영해 주는데요, 연속적으로 운이 좋거나 나쁘면 아예 색깔이 바뀔 수도 있는 시스템이라 평소 실력을 제대로 반영해 주지 못합니다. 관련해서는 djm03178님의 Codeforces 레이팅에 관련된 글을 읽어 보면 좋습니다.

그러니까 문제를 평소보다 못 풀어도 괜찮고, 레이팅이 떨어지더라도 괜찮아요. 애초에 그게 진짜 본인의 실력은 아닐 거예요.

그래서 목적지는 레이팅이 아니다

라고 말하고 싶습니다. 바꿔 말하자면, 레이팅은 진짜 실력이 아니고, PS 실력을 키우는 것과 레이팅을 올리는 것은 비슷해 보이면서도 다르다고 생각합니다.

물론 색깔을 바꾸기 위해 알고리즘 문제해결 공부를 하는 것도 정말 멋진 일입니다. 하지만 그 과정이 정말 지치고 힘이 든다면, 레이팅은 좋은 목표가 아닐지도 모릅니다.

하지만 실력을 키우면 레이팅은 자연스럽게 올라갈 거예요. 이런 마음가짐을 가지고, 대회를 충분히 많이 치면 언젠가는 목표하는 레이팅이 될 수 있다는 희망을 갖고, 나 자신의 가능성을 믿도록 합시다.

조금 현실적인 조언

  • 업솔빙 / 문제 수를 목표로 하기 — 그래도 해결하는 문제 수는 레이팅보다 직관적이면서도 그렇게 많이 변하는 값은 아니기 때문에 목표로서 유의미하다고 생각합니다.
    문제 레이팅을 목표로 하는 것과 맥락을 같이하는데요, 대회에서 풀었던 제일 어려운 문제의 다음 번 문제를 해결하려고 시도해 봅시다. 모르겠다면 에디토리얼을 보고 인사이트를 얻어갑시다. 아까운 실수로 틀렸다면 너무 자책하지 말고 오히려 자신을 격려해 줍시다. 뼈아픈 실수일수록 반복하는 일이 적을 거예요. 궁극적으로는 대회에서 해결할 수 있는 문제 수를 늘리는 것을 목표로 합시다.
  • 문제 레이팅을 목표로 하기 — 문제 수를 목표로 하는 것과 맥락을 같이합니다.
    코드포스 대회가 끝나면 Problemset에 문제 레이팅이 공개됩니다. 목표 문제 레이팅 $r$을 정해 두고, 대회가 끝난 후 $r$ 이하의 문제들을 풀어보는 것으로 단련해 봅시다. 궁극적으로는 대회 시간 내에 $r$ 이하의 문제들을 안정적으로 풀 수 있는 것을 목표로 합시다.
  • 버추얼 컨테스트 돌리기 — 코드포스에는 끝난 대회를 가상 참가할 수 있는 기능이 있습니다. 또 가상 컨테스트 참여로 가상 레이팅을 계산할 수 있는 서비스도 있습니다. 이 서비스를 활용해 가상 컨테스트를 자주 치면 실력도 단련할 수 있고, 앞서 언급한 샘플링 주기의 문제도 어느 정도 해결할 수 있겠죠.
  • Atcoder — 일본 기반의 알고리즘 대회 사이트입니다. Atcoder는 코드포스의 레이팅 공식과 달리 현재까지 참여한 모든 대회의 퍼포먼스를 가중평균하는 식으로 레이팅을 계산하기 때문에 참가자의 평소 실력을 좀 더 잘 반영한다고 생각합니다. 게다가 문제도 코드포스보다 훨씬 깔끔하며, 시스텟이 없고, 무엇보다 시간대가 같아서 주말 오후 9시에 부담없이 참여할 수 있다는 장점도 있습니다. 강력하게 추천합니다.
  • 팀 연습 하다 오기 — 조금 더 긴 시간 동안 더 어려운 문제들에 대해서 생각해볼 수 있는 좋은 방법입니다. 새로운 인사이트를 얻을 수 있습니다.
  • 당분간 쉬기 — 너무 지쳤다면 괜찮아질 때까지 쉬어도 괜찮습니다. 알고리즘은 잊고 놀러 나가서 맛있는 거 먹고 옵시다. 금방 다시 회복할 수 있을 거예요.

알고리즘 문제해결이 여러분을 마음고생시키지 않았으면 좋겠어요. 여러분의 문제해결을 항상 응원합니다.

Prop `className` did not match

Next.js + styled-components에서 Prop `className` did not match가 발생하는 이유와 해결 방법

작년 가을에 solved.ac 프론트엔드를 Typescript로 리팩터하면서 당황스러운 경험을 했습니다. 사이트 내의 아무 링크나 클릭해서 다른 페이지로 가면 스타일시트가 전부 깨지는 것이었습니다.

콘솔을 열어 보니 다음과 같은 에러가 뜹니다.

Warning: Prop `className` did not match. Server: "sc-xxxxxx xxxxx" Client: "sc-yyyyyy yyyyy"

오류에서 알 수 있듯이 서버와 클라이언트에서 클래스네임이 일치하지 않아서 발생한 오류임을 알 수 있습니다. Next.js는 SSRServer-side Render을 도와주는 프레임워크입니다. SEO검색 엔진 최적화 등을 위해 처음 페이지를 로드할 때는 서버에서 렌더해 오지만, 페이지에서 링크를 클릭해 다른 페이지로 넘어갈 때는 CSR로 페이지를 렌더합니다. SEO와 속도 두 가지를 해결해 주는 프레임워크죠.

그럼 서버와 클라이언트는 기본적으로 같은 로직을 공유할 텐데 왜 이런 일이 일어나는 걸까요?

babel-plugin-styled-components가 없어서

첫 번째 이유는 babel-plugin-styled-components가 없어서입니다. 이 Babel 플러그인은 환경과 상관없이 일관된 className을 생성(consistently hashed component classNames between environments)해 줍니다. 헐 그럼 styled-components는 이 플러그인 없으면 기본적으로 className 생성을 ‘환경’에 의존한다는 뜻인가요 네 그렇습니다.

styled-components는 styled 함수로 만든 컴포넌트마다 generateId 함수를 이용해 유일한 식별자를 생성하는데요, 함수에서 확인할 수 있다시피 전역 카운터를 하나 두고 컴포넌트 하나를 처리할 때마다 증가시켜 가면서 생성됩니다.

위의 방법으로 식별자를 생성하면 어떤 일이 일어날 수 있을까요? 컴포넌트가 생성되는 순서에 따라 같은 컴포넌트이더라도 다른 식별자가 붙을 수 있게 됩니다! CSR에서는 상관없겠지만 SSR과 CSR을 같이 활용하는 경우 서버와 클라이언트가 컴포넌트를 생성하는 순서에 따라 식별자가 달라질 수 있습니다. babel-plugin-styled-components는 이런 식별자 생성 과정을 정규화해 줍니다.

다음과 같이 해결할 수 있습니다.

1. 플러그인 설치:

npm i --save-dev babel-plugin-styled-components

2. 프로젝트 루트의 .babelrc 편집(없을 경우 생성):

{
  "plugins": ["babel-plugin-styled-components"]
}

3. Next.js를 사용 중인 경우 이곳의 _document.js를 복붙해 오세요.

그래도 안 돼요

이 포스트의 핵심입니다.

solved.ac의 경우에는 저걸 다 했는데도 안 되길래 몇 달 내내 이거 고치려고 삽질을 했습니다. Typescript로 리팩터링하기 전엔 없던 문제였는데 Typescript를 들고 오면서 생긴 오류라, 뭐가 문제인지 찾아보다가 커스텀 테마 타입 정의 때문이라는 걸 알았습니다.

solved.ac 프론트엔드 코드에는 SolvedTheme라는 타입이 있고, 여기에 테마 정의를 넣습니다.

interface SolvedTheme {
  defaultFonts: string
  codeFonts: string
  background: string
  textColor: string
  textColorInverted: string
  textSecondaryColor: string
  border: string
  borderColor: string
  tableHeaderBackground: string
  tableBackground: string
  footerBackground: string
  primaryColor: string
}

기존의 경우 styled-components로 만든 컴포넌트에서는 이를 아래와 같은 식으로 활용해 왔습니다.

const TopBarContainer = styled.div`
  position: fixed;
  width: 100%;
  height: 48px;
  line-height: 48px;
  background: ${({ theme }) => theme.background};
  border-bottom: ${({ theme }) => theme.border};
  top: 0;
  left: 0;
  z-index: 10000;
`

Javascript에서는 문제가 없는 코드이지만 Typescript에서는 컴파일 에러가 납니다. theme의 타입이 위에서 정의한 SolvedTheme가 아닌 styled-components에 내장된 DefaultTheme이기 때문입니다.

우선 이 문제를 해결하기 위해 열심히 구글링을 했고, styled-components를 아래와 같이 제 타입 정의로 감싼 뒤 이렇게 만들어진 새로운 styled를 여기저기 import 해 와서 사용했습니다. import styled from '../styles/Themes' 같은 식으로요.

import * as styledComponents from 'styled-components'
import { ThemedStyledComponentsModule } from 'styled-components'

const {
  default: styled,
  css,
  createGlobalStyle,
  ThemeProvider,
  ThemeConsumer,
  keyframes,
} = styledComponents as ThemedStyledComponentsModule<SolvedTheme>

export { css, createGlobalStyle, keyframes, ThemeProvider, ThemeConsumer }
export default styled

그런데 이렇게 정의해 버리면 babel-plugin-styled-components가 의미가 없어집니다. babel-plugin-styled-components는 import 경로가 ‘styled-components’인 경우에만 작동하기 때문인데요.

옵션에서 바꿀 수 있어 보이지만 깔끔한 해결책은 아닌 거 같고, 대신 styled.d.ts를 새로 만들고 여기에서 DefaultThemeSolvedTheme으로 두면 됩니다. 그러면 위의 문제를 해결하면서 커스텀 테마의 타입 정의도 사용할 수 있습니다.

import 'styled-components'
import { SolvedTheme } from './Themes'

declare module 'styled-components' {
  export interface DefaultTheme extends SolvedTheme {}
}

(21/12/23 수정: 코드가 declaration merging을 사용하도록 수정했습니다. type DefaultTheme = SolvedTheme로 하는 경우에는 VS Code 에디터 자동완성 등의 기능을 제대로 활용하지 못했습니다.)

일반적인 원인은 아닐지 모르겠지만, 제가 영문도 모르고 몇 달간 고생한 걸 다른 분들이 겪지 않았으면 하는 마음에서 제 사례를 소개했습니다.

참고한 리소스

UCPC 2020을 개최했습니다

UCPC 2020 개최 후기

기회가 되어 올해 전국 대학생 프로그래밍 대회 동아리 연합전대프연 회장을 맡아 UCPC 2020을 개최했습니다. 2019 서강대학교 프로그래밍 대회에 이은 두 번째 대회 운영입니다.

전대프연은 알고리즘 문제해결을 좋아하는 25개 대학교의 26개 동아리의 연합이고, UCPC는 전대프연에서 매년 개최하는 프로그래밍 대회입니다. 보통 가을에 열리는 국제 대학생 프로그래밍 경시대회 한국 리저널의 연습 격 대회로 시작해서, 지금은 국내에서 열리는 프로그래밍 대회 중에서 커뮤니티 대회로는 가장 큰 규모를 갖고 있습니다.

왜 하겠다고 했나요?

대회를 코디네이트하는 건 힘듭니다. 그래서 선뜻 총대를 매겠다고 나서는 경우는 드물고, 실제로 3년 전엔 대회가 안 열린 적도 있었습니다. 4월이 되어도 아무도 대회 총괄을 하려는 사람이 없어 올해는 제가 열어보겠다고 했습니다. 저는 당시 휴학 무직 백수로 즐겁게 하루종일 뒹굴뒹굴 감자칩 먹으면서 매일 컴퓨터랑 눈싸움이나 하고 있었는데, 아마 휴학하고 있지 않았다면 상당히 바빴을 테니 나서지도 않지 않았을까 싶습니다.

인수인계를 받자마자 대회 기획을 시작하고, 출제자를 모집했습니다. 그러나 올해는 큰 문제가 있었습니다. 경우에 따라 기획의 근간이 바뀔 수도 있는 아주 큰 문제였습니다. 바로..

준비되지 않은 우리 앞에 성큼 다가와 버린 코로나 시대

코로나 큐

2020년을 살아가는 여러분께서는 모두 마음 속에 우선순위 큐 하나쯤을 갖고 계실 겁니다. 바로 코로나 시대가 끝나면 할 일이라는 이름의 우선순위 큐입니다. 저는 벌써 원소가 120개를 넘어가려고 합니다. 코로나 끝나면 여행 가야지, 코로나 끝나면 맛집 탐방 다녀야지, 코로나 끝나면 못 봤던 친구들 만나서 밥 먹어야지, … 분명 4월즈음에만 해도 큐가 이렇게 커질 거라고는 생각하지 못했습니다. 상황이 괜찮아질 줄 알았으니까요.

UCPC도 마찬가지였습니다. 대회가 열릴 7월즈음에는 상황이 괜찮아지겠지-라는 막연한 기대가 있었습니다. 그래서 오프라인으로 대회를 진행하려고 계획했습니다. 오프라인으로 개최하는 것이 좋은 이유를 나열해 보자면:

  • UCPC는 프로그래밍 대회 동아리 회원들의 교류와 경쟁의 장을 목표로 하고 있습니다.
  • 부정행위 검사가 힘듭니다. 참가자가 다른 팀 코드를 베꼈는지는 쉽게 알 수 있습니다. 하지만, 예를 들어, 3인 팀 대회인 UCPC에서 4인 이상의 팀원이 코드를 작성한다던가, (진짜 정말 극단적인 예시로) 대회 중에 tourist에게 문제 해법을 물어보고 이를 이용해 해결하는 등의 부정행위는 막기 힘드며 검사하는 것도 거의 불가능에 가깝습니다.
  • UCPC와 같은 규모의 대회에는 운영비가 많이 필요합니다. 그래서 스폰서의 도움이 절실합니다. 하지만 온라인으로 진행할 경우 오프라인으로 진행하는 것보다 스폰서에게 후원에 대한 메리트를 어떻게 줄 수 있을지 생각해내고 이를 어필하는 것이 상대적으로 어렵습니다.

반면 온라인으로 개최하는 것도 나름의 장점이 있습니다.

  • 예산에서 대관료를 고려할 필요가 없어집니다.
  • 대회장에 오지 않아도 됩니다. 지방에서 서울로 올라와서 참가하시는 분들의 경우 대회 참여를 위해 만 하루를 잡고 참가하시는 경우가 흔하다고 들었습니다. 이런 모든 비용을 절감할 수 있습니다.

분명 온라인 대회로 진행해서 얻을 수 있는 장점들도 있지만, 오프라인 대회로 개최하는 것의 장점이 훨씬 크리티컬했기에 할 수만 있다면 오프라인으로 진행하고 싶었습니다.

그러나 모두가 아시는 대로…

…하루 10명대였던 확진 판정은 갑자기 다시 30명, 40명, 80명이 되었고, 오프라인 대회로 개최할 경우 스태프가 방역을 책임질 수 없겠다는 생각이 들어 오프라인 개최를 포기하게 되었습니다.

정작 이 글을 쓰고 있는 시점에서는 일일 확진자가 100명 넘게 발생하고 있네요.

온라인이기 때문에 할 수 있는 것을 하기

그래서 할 수 있는 거라도 최대한 재밌게 해 보기로 했습니다. 일단 위에서 오프라인 대회의 장점으로 언급되었던 것들을 온라인으로 어떻게 살릴 수 있을지에 대해 먼저 고민해 봤습니다.

  • 교류와 경쟁의 장 제공 – 기존에 대회장에서 하던 풀이 방송과 스코어보드 방송을 Twitch 온라인 방송을 통해 진행하기로 합니다. 물리적인 공간보다는 덜하겠지만, 실시간 댓글을 통해 교류할 수 있게 됩니다.
  • 스폰서 어필 – 온라인 방송 중 방송 화면의 공간을 일부 활용해 스폰서 로고를 지속적으로 노출합니다. 스튜디오가 구해진다면 후원 세션을 참가자들이 가장 많이 볼 시간대인 대회 종료 직후 ~ 문제 해설 전에 진행합니다.

부정행위에 대한 고민이 가장 많았습니다. 대략 다음과 같은 의식의 흐름을 거쳤습니다.

  • 웹캠이 있으면 부정행위를 막을 수 있을까?
    • 웹캠이 있다고 해도 스크린에 카카오톡 같은 걸 띄우면 충분히 부정행위를 할 수 있지 않을까? 그럼 스크린 녹화도 필요할까?
    • 스크린 녹화를 하더라도 다른 장비가 있으면 충분히 부정행위를 할 수 있지 않을까?
    • 애초에 참가팀 50팀이 동시 접속할 수 있는 화상 채팅 서비스가 존재할까?
    • 존재한다고 하든 안 하든 우리가 그 화면을 전부 모니터링할 수 있는 여력이 있을까?
  • 웹캠은 힘들 것 같으니 카피 체크를 하자
    • 팀 간의 복붙은 막을 수 있겠지만 4명 이상이 한 팀으로 친 경우는 어떻게 막을 수 있을까?
    • 4명 이상이 한 팀으로 치지 않았더라도, 예를 들어 누군가 대회 중에 대회 문제를 random Codeforces red한테 물어봐서 푼다면? 어떻게 막을 수 있을까?
    • 그 코드는 언제 다 읽을까?
  • 결국 어떻게 해도 부정행위를 막을 수는 없는 거 아닌가?
  • 근데 어차피 부정행위 해서 높은 점수 받고 못 보던 사람이 스코어보드 위에 있는 상황이 발생하면 다 티나지 않을까?

결론은 PS 커뮤니티를 믿고 코드 카피 체크 이외의 별도의 부정행위 검사를 하지 않는 것으로 났습니다. 커뮤니티 대회였기에 가능했던 결정이었습니다. 큰 상금이 걸린 기업 대회였다면 이런 상황에서 상당히 곤란했을 것입니다.

인터넷 방송

Twitch Sports: Getting Started | Twitch Blog
인터넷 방송 플랫폼 트위치

그렇게 결정하고 나니 인터넷 방송이 대회 기획에서 출제와 검수를 제외한 가장 중요한 요소가 되었습니다. 프로그래밍 대회에 많이 참여해 보셨고 (무려 ICPC 월드 파이널!) 관련 스트림도 자주 하시는, 세계적인 인기를 자랑하는 월클(World Class) 스타 정재헌Gravekper님께 참여해주실 수 있는지 여쭸고, 흔쾌히 승낙해 주셔서 함께 온라인 방송을 기획하게 되었습니다.

방송에서 뭘 다루면 좋을지, 방송을 언제부터 켜면 좋을지, 화면은 어떻게 구성하면 좋을지 등등을 대회 직전까지 열심히 논의했습니다. 인터넷 방송에는 문제 풀이, 스코어보드, 후원 세션은 필수로 들어가야 했고, 이외에 대회에 참여하는 사람들도, 참여하지 않는 사람들도 모두 볼 수 있다는 점을 감안하면서 대회 종료 전에 뭘 하면 좋을까를 고민했습니다. 이에 온라인 방송이 있는 다른 대회들을 참고했습니다.

  • ICPCIOI는 대회 중에 실시간 스코어보드와 문제 해설을 보여줍니다. ICPC 방송은 생각보다 재밌습니다. 그래서 사실 제가 하고 싶었던 이상에 가까웠던 방송 형태이긴 하나, 온라인 대회이고 웹캠 사용을 포기했기 때문에 화면에 보여줄 수 있는 게 없었고, UCPC 방송은 대회 참가자들도 볼 수 있는 방송이었기에 문제 해설도 보여줄 수 없었습니다.
  • 반면 Google Hash Code 방송은 참가자들이 대회 중에 시청할 수 있습니다. 그래서 대회 시작 전후에만 방송을 하고, 대회 중에는 아무것도 보여주지 않습니다.

하지만 대회 중에 아무것도 보여주지 않으면 심심하기 때문에 간단히 스코어보드를 띄워 두기로 결정했습니다.

문제 풀이와 후원 세션도 걱정이었습니다. 지금까지 UCPC 풀이는 출제자가 강단에 나와 슬라이드를 보여주는 식으로 진행했고, 후원 세션도 마찬가지였습니다. 근데 올해는 어쩌죠?

다행히 감사하게도 작년에 이어 고려대학교 SW중심대학사업단에서 장소를 제공해 주셔서, 고려대학교 정보대학의 대형 강의실 하나를 스튜디오로 사용할 수 있었습니다. 기존처럼 출제진이 강단에서 슬라이드로 발표하고 이를 카메라로 찍어 방송할 수 있었습니다.

출제와 검수

코로나 시대가 되어도 프로그래밍 대회에서 변하지 않는 것은 바로 출제와 검수입니다. 올해는 제가 여름에 회사에 갈 걸 우려해 대회 준비를 일찍 시작했습니다. 출제진은 우리나라 최대의 알고리즘 문제해결 커뮤니티인 BOJ Slack에서 모집했고, 이후에 추가로 call for tasks를 통해 문제 공모를 받았습니다. 올해는 공모받은 문제가 많아 출제진 풀이 상당히 컸습니다.

슬랙

기획을 포함해 모든 소통은 Slack으로 진행했습니다. Slack의 (무료 버전의) 최대 단점은 메시지가 10,000개 이상 쌓이면 이전 메시지들은 하나씩 못 보게 된다는 것인데요, 마침 코로나로 인해 Slack에서 3달간 무료로 Standard Plan을 제공해 주고 있어서 고민 없이 사용했습니다.

문제마다 하나의 채널을 만들어 최대한 맥락을 잃지 않고 대화할 수 있도록 했습니다. 또한 대회 전반적인 공지를 올릴 #general 채널, 인터넷 방송을 기획할 #broadcasting 채널, 컨테스트 도중 생기는 라이브 이슈에 대응할 #contest-finals / #contest-preliminaries 채널 등을 필요에 따라 주제 단위로 만들어 활용했습니다.

Zapier

특히 박수찬tncks0121님의 도움을 받아, Slack과 Zapier 연동을 사용해 call for tasks로 메일을 받으면 메일 내용을 자동으로 Slack 채널에 포워딩해 주도록 설정할 수 있었습니다. 다만 Zapier의 문제인지 후술할 UCPC 메일서버 문제인지는 모르겠지만 메일이 몇 개 누락되는 경우가 생겼습니다. 이런 경우엔 제가 UCPC 메일함에서 직접 공모받은 문제를 출제 채널에 배달해야 했습니다.

구글 드라이브

출제/검수 현황과 문제 자료 관리 등에는 Google Drive를 사용했습니다. G Suite에 제공되는 기능인 공유 드라이브를 적극적으로 활용했습니다.

출제

대회 분위기 정하기

출제 초기에는 예선과 본선 각각의 적절한 난이도 커브를 결정해 주는 것이 중요합니다. 문제들이 너무 쉬우면 대회 중에 문제를 전부 해결하는 팀은 대회가 끝날 때까지 할 게 없어서 심심해지고, 반대로 너무 어려우면 문제들에 압도당한 팀들이 좌절하게 되기 때문입니다. 그래서 먼저 난이도 커브를 정하고, 이에 맞춰서 어떤 문제를 내야 할지, 문제 풀에서 어떤 문제는 사용하고 어떤 문제는 사용하지 말아야 할지 등을 결정할 수 있습니다. 작년 서강대 대회 출제 후기에서 언급했던 것이기도 합니다.

UCPC 2020 출제 현황 시트 – 블로그 글의 이해를 돕기 위해 연출되었습니다

이와 관련해 작년 UCPC와 올해 UCPC의 가장 큰 차이는 문제의 난이도를 가늠할 수 있는 수단인 solved.ac의 존재였습니다. 서울 리저널의 난이도 분포를 참고해서 문제 풀에 있는 문제들의 난이도들을 각자 가늠해 보고, 예선과 본선 중 어느 쪽에 사용할지 플로우를 잘 돌렸습니다. 또한 시트에 추가적으로 알고리즘 분류를 적어 넣어, 한 분야에 너무 치우친 컨테스트가 되지 않도록 문제 배치를 잘 해주었습니다. 다만 검수 과정에서 난이도와 분류 정보를 보는 것은검수에 악영향을 끼칠 수 있어서 해당 시트는 출제진만이 편집했고, 검수 현황 시트를 따로 만들어 두었습니다.

문제 난이도를 가늠하는 현장

Call for tasks로 공모받은 문제들도 이렇게 출제진끼리 난이도를 가늠해 보고 대회에 필요하리라 생각된 문제들을 채용했습니다. 공모받은 문제들과 내부에서 출제한 문제들이 많아서 아쉽게도 사용할 수 없게 된 문제가 많았습니다.

디스크립션과 데이터 작성

Polygon

데이터의 무결성을 최대한 보장하기 위해 디스크립션 작성을 제외한 모든 작업은 Polygon에서 testlib을 사용해 진행했습니다. Polygon 서버가 다소 불안정해서 조마조마한 상황이 몇 번 있었고, 패키지 전체를 자주 백업했습니다.

solved.ac Overleaf

문제지는 solved.ac 서버에 올라가 있는 비밀의 시크릿 프린세스 self-hosted Overleaf에서 작업했습니다.

디스크립션데이터 작성에 있어서는 대회 참가자가 문제 디스크립션을 이해하거나 기타 문제에서 중요하지 않다고 생각되는 이슈들을 해결하는 데 시간을 소비하지 않도록 하게 하기 위해 다음 원칙에 따라 UCPC 출제 컨벤션을 만들고 이를 최대한 지키려 노력했습니다.

  • 일부러 디스크립션을 이해하기 어렵게 하는 컨셉의 문제가 아닌 경우, 디스크립션은 한 번만 읽어도 이해할 수 있을 정도로 이해하기 쉬워야 하며, 디스크립션이 문제 해결을 방해해선 안 됩니다.
    • 같은 맥락에서 어려운 수학 기호 및 개념은 가능할 경우 최대한 사용하지 않습니다. 갓 고등학교를 졸업한 사람이 봐도 이해할 수 있는 수준이어야 합니다. 이를테면, ‘$A$의 모든 원소들의 제곱의 합’이라고 적을 수 있는 것을 굳이 ‘$\sum_{a\in A} a^2$’라고 적지 않습니다.
    • 글과 문자가 쉽게 구분되면서 문자가 글을 읽는 데 방해가 되는 일이 없도록 해야 합니다. 따라서 모든 문자는 기울임꼴로 작성하고, 수식에는 띄어쓰기를 잘 하며, 기호는 정확한 것을 사용해야 합니다.
  • 입출력 변수의 범위는 입출력 섹션에 한꺼번에 명시하는 것이 가장 좋습니다.
  • 데이터는 무결해야 합니다. 명시한 형식과 다른 데이터가 있어서는 안 되며, 입력 데이터에 대한 정답이 아닌 데이터가 출력 데이터로 되어 있어서는 안 됩니다.
  • 생소한 입출력 방법 등으로 참가자가 고생하는 일이 없어야 합니다. 특히 EOF로 출력의 끝을 명시하는 입력 데이터들이 그렇습니다.

또한 디스크립션을 굳이 Polygon에서 작업하지 않은 이유가 있다면, BOJ의 문제 출제 플랫폼인 BOJ Stack의 존재 때문입니다. BOJ에서 대회를 개최하기 때문에 대회 전에 문제들을 전부 BOJ로 옮겨야 하는데요, 대회 직전에는 디스크립션 수정이 잦습니다. 근데 Polygon에서 디스크립션을 관리하게 되면 어차피 만들어야 하는 문제지에서도 디스크립션을 수정해야 하고, BOJ Stack에서도 디스크립션을 수정해야 합니다. 또한 BOJ Stack에서는 LaTeX을 최대한 쓰지 말아달라고 하기 때문에 TeX로 작성한 문제들을 전부 HTML로, 이를테면 $1 \leq N, M \leq 200\ 000$ $1 \leq N, M \leq 200\ 000$과 같은 식은 1 ≤ N, M ≤ 200 1 &le; <em>N</em>, <em>M</em> &le; 200 000으로 다시 포맷해야 하는데, 이는 생각보다 상당히 고통스럽습니다. 이런 공수를 줄이고자 Overleaf에서만 디스크립션을 관리했습니다.

물론 HTML로 포맷하는 공수조차 줄이고자 그냥 모든 문제에 TeX을 사용했습니다. 이렇게 할 경우 Overleaf에서 Stack으로 문제 본문을 복사+붙여넣기 하면 세팅이 끝납니다. 참 쉽죠.

문제 삽화가 그려지는 과정

문제와 해설에 사용될 그림의 경우, 그림을 요청하는 채널을 따로 만들어서 출제진의 요청을 받고 제가 그림을 열심히 제작했습니다.

마지막으로 정해는 ICPC 경향에 맞춰 C++과 Kotlin(또는 Java)으로 모두 작성했고, 해당 언어들로 문제를 해결 가능함을 보장했습니다.

검수

문제 초안이 완성되면, 문제를 검증하게 됩니다. 주로 다음과 같은 항목들을 검증해야 합니다.

  • 데이터와 디스크립션의 포매팅이 올바르고well-formed 무결한지 (UCPC 컨벤션을 지키는지)
  • 출제자의 풀이가 완벽한지
  • 출제자가 의도하지 않은 풀이로 풀리지는 않는지, 출제자가 의도하지 않은 풀이로 풀렸다면 그 풀이도 정답으로 허용할 것인지

검수진은 바로 위와 같은 항목들을 꼼꼼히 확인하는 역할을 합니다. 출제진들 사이의 교차 검수crosschecking 이외에도 외부 검수진을 모셔 와 검수를 진행했습니다.

검수의 흔적

참가팀들이 틀린 방법으로 접근할 것 같은 풀이(‘사풀이’라고도 합니다)를 미리 예상하고, 이를 적절히 막습니다. 방법은 여러 가지입니다. 예를 들어,

  • 어떤 자연수 $N$이 소수인지 판별해야 하는 문제에서, $N=1$이 입력으로 들어오는 경우를 제대로 처리하지 못하는 코드들을 틀리게 하기 위해 $N=1$인 데이터를 준비할 수 있습니다. (예외 처리 데이터)
  • 혹시라도 고려하지 못한 경우가 있을 수 있으니 랜덤에 의존해 제작한 일반적인 데이터를 추가로 더 준비할 수 있습니다.
  • 아예 틀린 방법으로 문제를 해결하는 코드가 준비한 데이터를 운좋게 전부 통과하는 경우가 있다면, 틀린 방법으로 풀면 틀리거나 시간 초과를 받는 데이터를 준비할 수 있습니다. (반례 데이터)
  • 출제자가 의도한 풀이보다 훨씬 쉬운 풀이로 풀리는 경우 시간 제한을 조정하거나 문제에 등장하는 상수들의 제한을 조정할 수도 있습니다. 의도한 풀이로 접근하면 풀리지만 의도하지 않은 풀이로 접근하면 시간 초과를 받도록 적절히 제한을 조정합니다.

등과 같은 과정을 거쳐 문제를 완벽하게 만들었습니다.

다들 모여

이 참가자는 WA를 받고 생존한 후에 다른 참가자를 소환합니다.

재작년과 작년의 참가 조건이 마음에 들었고, 그대로 유지했습니다. 석박통합과정 학생의 참가 조건만 명확하게 정했습니다.

  • 3명이 1개 팀으로 참가해야 함
  • 학부생이라면 재학과 휴학을 불문하고 참가 가능
  • 대학원생이라면 석사과정 또는 석박통합 2년차까지 참가 가능
  • 다른 학교 구성원끼리 팀을 이루어 참가 가능

수상 경력에 따라 제한 조건을 둘까도 생각해 봤는데, UCPC는 역시 한국 최강자전의 컨셉인 것도 있는 것 같아 딱히 두지 않았습니다. 총 299팀이 예선대회에 참가를 신청해 주셨습니다.

매년 하던 것처럼 Google Forms를 이용해 참가 신청을 받고 GMail을 통해 공지사항을 전송했는데, 대회 규모가 커지면서 이 방법을 계속 사용하기엔 다소 무리가 있는 것 같다는 생각을 했습니다.

  • 참가자 중 메일 주소에 오타를 낸 참가자들이 몇몇 계셨습니다. 실제 예시로, nvaer.comnaver.com, gamil.comgmail.com, kaist.co.krkaist.ac.kr 등으로 도메인에 오타를 낸 메일 주소들을 확인할 수 있었고, 제 수작업으로 고쳤습니다. 도메인 오타는 어찌저찌 고칠 수 있는데 @ 앞 부분에는 과연 오타가 없었을까요? 이메일 인증에 기반한 서비스를 사용하거나, 이를 직접 구현해야겠다고 느꼈습니다.
  • 예선 계정 정보 메일 299개를 하나하나 작성해 보냈습니다. 또한 GMail에 일일 전송 메일 수 제한이 있다는 사실을 이 대회 운영하면서 처음 알았습니다. 이 때 대량 자동 메일 전송 시스템을 구축했어야 했는데, 그러지 못했던 것이 후술할 예선대회 대참사로 이어집니다.

예산 확보

출제자 분들과 검수자 분들께 노력에 대한 합당한 대우를 드리고, 참가자 분들께 상을 드릴 수 있도록 예산을 정했습니다. 온라인 대회였기 때문에 장소나 비품, 식사 등에 대한 고려는 할 필요가 없다고 생각했으나.. 오산이었습니다. 온라인 방송을 할 장소와 장비가 필요했고, 상품이 있다면 상품을 배송할 비용도 필요했습니다. 대관료와 장비, 배송비 등을 종합해 보니 온사이트로 치뤄진 예년 예산만큼은 못해도 상당히 무거운 예산이 나왔습니다.

감사하게도 대회를 열겠다고 하자마자 케니소프트, 알고스팟, 스타트링크, 그리고 고려대학교 SW중심대학사업단에서 후원 의사를 보내 주셨습니다. 이후에도 여러 개발 기업에 무작정 메일을 보냈고(…) 마인즈랩네이버 D2에서 출제와 검수 비용을 지원해 주셨습니다. 대단히 감사합니다! (solved.ac의 경우 사실상 제 개인 후원이기 때문에 논외로 합니다)

온라인 대회여서 기존의 후원 세션을 기존처럼 진행할 수 없어 어떻게 어필할 수 있을까 고민했습니다만, 오히려 온라인 대회이고 공개된 온라인 방송으로 대회를 진행하기 때문에 굳이 참가자가 아니더라도 대회 방송을 볼 수 있고, 따라서 알고리즘 문제해결에 대한 충분한 관심이 있는 시청자들에게 기업을 홍보할 수 있다는 점을 어필하기로 했습니다.

사실 출제와 검수는 이전에 서강대 대회를 총괄해 본 적이 있었기에 어느 정도 익숙한 부분이었습니다. 하지만 서강대 대회는 학과 사업이어서 후원사를 구할 필요가 없었던 반면 UCPC의 경우에는 우여곡절이 많았고, 실수도 했습니다.

가장 큰 실수는 후원 조건을 명확하게 정하지 못했고, 또 이를 후원사에 제대로 공유하지 못했던 것이었습니다. UCPC에서는 홍보 기업 발표 세션을 진행하는데, 온라인 방송으로 홍보 세션을 진행하면 참가자들이 도중에 방송을 이탈해 효과가 반감될 것을 우려하여 후원 조건 금액을 높게 정했습니다. 그러나 죄송하게도 다른 바쁜 일들에 정신이 팔린 제 불찰로 인해 이를 공유받지 못한 후원사가 계셨습니다. 다음 대회부터는 이번 일을 반면교사로 삼고, 가능하다면 파이콘의 예처럼 후원 조건을 합당하고 명확하게 정하고 홈페이지에 공지하며 후원사와 긴밀히 소통할 수 있도록 해야겠습니다.

후원 기업들에 다시 한 번 무한한 감사를 드립니다.

예선 방송 리허설(7월 23일): 폭풍전야

대회 전에 리허설을 통해 방송 진행 계획을 구체화했습니다. 운영진들과 함께 안암의 명물 고고 인디안 쿠진에서 카레를 먹고, 대회 중 스튜디오로 사용될 고려대학교 정보대학 강의실에 숭고한 연합대회가 진행되는 도중 급습해 모여 강의실의 배치와 장비 등을 확인하고, 인터넷 속도는 방송을 송출하기에 충분한지, 강의실 구조 상 풀이 and/or 후원 세션은 어떻게 하면 좋을지 논의했습니다. 관련해서는 가장 고민을 많이 하신 재헌님의 UCPC 2020 방송 후기를 참고하시면 좋습니다.

OBS가 브라우저 화면을 겹쳐 띄워 둘 수 있다는 것을 이용해 기획한 대로 제가 대회 직전(당일 새벽 3시까지!)에 React로 간단하게 방송 씬을 만들었습니다. 코드는 여기 올라와 있습니다.

예선(7월 25일): 이 곳이 어둠의 기운으로 가득차 곧 무슨 일이 일어날 듯 합니다

방송 씬을 만드느라 날을 새고 10시에 고려대에 도착해서 세팅을 시작했습니다. 운영진들은 과연 올솔이 몇 팀이나 나오고 언제 제일 먼저 나올까 내기를 합니다.

막상 대회 시간이 다가오니까 대회 진행 플랫폼인 BOJ가 500 Internal Server Error와 502 Bad Gateway 에러를 뱉기 시작합니다. 어…? 이대로는 대회를 정상적으로 진행할 수 없겠다 싶어 대회 시작을 14:10으로 10분 연기했습니다.

그런데 좀 잠잠해지나 싶더니 14:07쯤 되니까 같은 현상이 다시 일어나는 거였습니다. 10분을 더 연기할까 고민하고 있던 찰나, BOJ Stack도 먹통이 되었습니다. 대회 정보는 BOJ Stack이라는 관리 페이지에서 수정해야 합니다. BOJ Stack이 접속이 막히면 운영진도 대회 시간을 수정할 수 없습니다.

Media Tweets by Haachama Sukidesu (@Haachama_Suki) | Twitter

’14:20에는 괜찮아지겠지? 그럼 종료 시간을 10분쯤 연장해야겠다’고 생각했습니다. 서버는 비웃기라도 하듯 계속 접속을 거부했습니다.그런 와중에 UCPC 관련 메일 아래에 적혀 있던 제 전화번호로 참가팀들의 전화가 걸려오기 시작했습니다. 운영진도 대회 서버에 접속할 수 없는 상황임을 알려 드렸습니다.

이제는 대회를 어떻게 할지 빠르고 공정하게 결정해야 했습니다. 특히 여러 지역에서 모여서 대회를 치기 위해 스터디룸을 빌리는 팀이 많다고 알고 있어, 이 분들의 피해가 최소화되도록 하려면 어떻게 해야 하나 고민했습니다. 그 와중에 대회 사이트에서 문제 제목을 읽은 팀이 있다는 제보를 받았습니다. 문제 제목을 읽은 팀이 있었다는 것은 문제를 읽은 팀이 있었을 수 있다는 뜻도 되므로 신중하게 결정해야 했습니다.

정말 다행히도 이번 UCPC는 온라인 대회였기에 공간의 제약을 받지 않았고, 본선에 몇 팀이 출전하더라도 수용할 수 있었습니다. 그래서 아예 기업 대회 Qualification 라운드의 형식으로 본선 커트라인을 명시하고 시간을 대폭 연장하기로 결정합니다. 그리고 단체 메일을 보냈습니다.

그런데, 감사하게도, 구글이 제가 아이패드(구글 계정 입장에서는 ‘새로운 기기’)로 대량의 메일을 보내려는 시도를 감지하고 전대프연 계정을 차단시켰습니다. 제가 회장이 되면서 바꾼 비밀번호로는 로그인이 안 됐고 이전 비밀번호로 인증을 받아야 했는데, 무려 제 전전전임 회장께서 설정하신 비밀번호였습니다. 당장 연락을 드렸지만 회신을 무작정 기다릴 수도 없는 상황이었어서, 제 개인 메일으로 단체 공지와 문제지를 전송했습니다. 이 때가 오후 3시였습니다.

서버 상황은 오후 4시를 즈음하여 개선되었고 코드를 제출할 수 있는 상황이 되었습니다. 예선대회에서도 해설과 스코어보드 공개를 할 예정이었고, 이를 위해 출제진들이 모여 있었으나, 안타깝게도 이후 방송은 진행하지 못했습니다. 여러모로 아쉬웠습니다. 예선 당일 서버 사고가 일어났던 이유는 여기에서 읽을 수 있습니다.

결과적으로 본선 진출 팀은 총 170팀이 되었고 의도치 않게 역대 최대 규모의 본선이 되었습니다. 컷을 5문제로 잡았으면 좋았겠다는 의견도 많았으나 안타깝게도 결정 당시에는 출전 팀들의 실력을 가늠하기 힘들었습니다.

본선도 규모가 예선 못지않게 커져버렸고, 본선대회에서도 같은 일이 되풀이되면 안 되었기에 만반의 준비를 했습니다. 우선 스타트링크와 함께 이런 일이 일어난 원인을 분석하고 당시 일어났던 상황이 재발되지 않게 하기 위한 기술적 조치를 취했습니다. 본선도 BOJ에서 치루는 것으로 결정했으나, 혹시 모를 사태에 대비하기 위해 UCPC 운영진도 DOMjudge 서버를 직접 구축해 대비했습니다.

본선(8월 1일):

이미지
대회 본부

정말 다행이게도 본선대회는 아무 문제 없이 순조롭게 잘 진행되었습니다.

서버 대비와 별개로 본선대회를 위해 준비한 것들이 몇 개 더 있었습니다. 그 중 가장 눈여겨볼만했던 건, 대회 중에도 공지했던 바 있지만, 이번 UCPC는 스코어보드 공개의 재미를 위해 프리즈 기준을 다소 특이하게 잡았던 것이었습니다.

프리즈 시간은 대회 종료 60분 전이었으나, 프리즈 시간과 관계없이 어떤 팀이 9문제를 해결한 순간 이후 그 팀의 모든 제출이 비공개되는 식이었습니다. 이를 위해 BOJ에서 스코어보드를 제공하지 않고 scoreboard.ucpc.me라는 별도의 사이트에 스코어보드를 띄웠습니다. 박수찬tncks0121님께서 운영자 스코어보드의 모든 제출을 $n$초마다 가져와서 가릴 건 가리고 공개 스코어보드에 보여주는 파이썬 스크립트를 짜 주셔서 가능했던 일이었습니다.

풀이는 원래 라이브로 방송하려 했으나, 풀이 슬라이드가 대회 중에 완성되기도 했고, 진행을 비교적 여유롭게 하기 위해 녹화방송으로 바꿔 진행했습니다. 풀이 슬라이드가 방송에서 사용한 것과 공개된 것이 다른데, 방송에서의 풀이 슬라이드는 출제진이 생각한 난이도 순서대로 문제가 정렬되어 있고, 공개된 풀이 슬라이드는 A, B, C.. 순입니다. 특별한 이유가 있다면 공개 슬라이드에서는 풀이가 필요한 문제를 더 빨리 찾게 하기 위함이었습니다.

본선 해설 및 스코어보드 공개 영상

본선대회를 성공적으로 종료하고 저를 제외한 운영진은 고기를 맛있게 먹으러 갔다고 합니다. 저는 안타깝게도 당일 너무 피로해서 그냥 집에 와서 곯아떨어졌습니다. 비극적인 엔딩이네요.

어땠나

힘들지만 의미있는 경험이었다고 말하면 식상할까요?

힘들었던 것들

전대프연 회장을 하는 것은 힘든 일이라고 익히 들어서 알고 있었지만 구체적으로 어떤 게 힘든 일인지는 잘 몰랐습니다. 이제 대략 알게 되었습니다.

  • 후원사를 구하기가 상당히 힘들었습니다. 온라인이어서 더 그랬습니다. 올해 ICPC도 후원 사정이 좋지 않다는 걸 생각하면 어디나 비슷한 것 같습니다. 그래서 개인적으로 옆 나라 리저널의 후원 사정이 꽤 부러웠습니다.
  • 상금 처리라던가 참가 상품을 택배로 보내야 했던 것도 힘든 점 중 하나였습니다.
  • 6월 말에 넥슨코리아 엔진스튜디오에 산업기능요원으로 입사하게 되었습니다. 6월까진 무직 백수여서 몰랐는데, 대회 코디네이팅과 왕복 3시간의 출퇴근 생활을 병행하는 것은 체력적으로 상당히 힘든 일이었습니다. 회식 도중에 나와서 대회 개최를 준비했던 적도 있습니다.
  • 이외에는, 참가자 등록이 번거로웠습니다. 특히 재학증명서와 휴학증명서 등을 일일이 확인하는 작업이 너무 번거롭고 힘들었습니다.
후원사 구하기와 재학증명서 처리는 사천왕 중에서도 최약체…

그렇지만 저는 온사이트 대회를 준비했던 건 아니었기 때문에 다른 해보다는 비교적 쉽게 준비한 것이 아닌가 싶습니다.

놓쳤던 것들

대회 중에 발생한 이런저런 예외적인 상황들에 대해 제대로 and/or 빠르게 대처하지 못했던 게 아쉬웠습니다. 앞서 언급했던 것들만 다시 언급하자면, 가령…

  • GMail은 하루 발신 제한량이 있었고, 제가 shiftpsh.com과 ucpc.me 도메인으로 발신하기 위해 개인적으로 월정액을 내고 사용했던 메일서버에도 마찬가지로 하루 발신 제한량이 있었습니다.
  • 사소하게는 call for tasks 메일 계정과 Slack을 연동시켜 주는 Zapier 스크립트가 간헐적으로 동작하지 않는 문제가 있어서 공모받은 문제를 확인하지 못할 뻔 하기도 했습니다.
  • 이메일 주소를 이메일 확인 등의 방법으로 검증하지 않아 메일 전송 과정 중에서도 누락되는 메일들이 발생했습니다. Google Forms를 사용하는 대신 직접 대회 등록 사이트를 만들었다면 좋았을 것입니다. 위의 이유와 맞물려 메일을 자동으로 발송해 주는 시스템이 있었다면 더 좋았을 것입니다.
  • 대회 서버가 다운되었을 때 의논할 시간이 부족한 상황에서 대회 진행 형식을 결정해야 했습니다. 이런 상황이 발생했을 때는 미리 어떻게 하면 좋겠다는 계획을 세웠더라면 참가자들의 피해와 스트레스를 줄일 수 있었을 것입니다.
  • 방송 계획과 대본을 미리 짜놓지 못해 다소 매끄럽지 못하게 진행된 것 같아 아쉬웠습니다.
  • (이건 예외적인 상황은 아니었고, 제가 정신없어서였지만) 제 불찰로 후원사와의 소통이 제대로 진행되지 못한 부분이 있었고, 안타깝게도 이로 인해 다소 불미스러운 일이 발생했습니다.

UCPC는 이제 예선 기준으로 참가 인원 1,000명을 바라보고 있을 정도로 커진 대회입니다. 코딩 테스트 열풍으로 인해 알고리즘 문제해결 및 경쟁 프로그래밍 입문자들이 갈수록 많아지고 있고, 이런 기조가 사그라들지 않는 한 대회 규모는 계속 커질 것으로 생각됩니다. 이런 규모의 대회라면, 이런 규모의 대회에서 일어날 수 있는 갖가지 상황들을 미리 파악하고 숙고하여 대비하는 것이 옳겠다고 뒤늦게 느낍니다.

그럼에도 좋았던 것들

우여곡절도 많았지만 전대프연으로써는 처음 시도했던 온라인 대회를 성공적으로 마무리할 수 있어서 뿌듯합니다. 코로나 시국도 프로그래밍 대회는 이기지 못했네요. 😎

대단하고 멋진 분들과 함께 최고의 커뮤니티 대회를 만들 수 있어서 즐겁고 뿌듯했습니다. 온라인 대회여서 안타깝게도 참가자 분들과는 만나지 못했지만요.

그래서 회장 1년 더 하나요?

이 팀은 사실 시프트를 제외한 레드시프트 팀인데, 제가 대회 같이 안 치고 혼자 운영하러 가서 삐진 나머지 이름을 이렇게 지었나 봅니다

사실 UCPC 2020 직후에도 SUAPC에서 운영과 출제를 했고, 신촌 캠프 대회와 SNUPC에서도 검수 및 조판으로 참여했습니다. UCPC에서 얻은 경험과 리소스가 상당히 많은 도움이 되었습니다.

운영진 16콤보

하지만 내년에도 회장을 할지는 잘 모르겠습니다. 일단 이제 직장에 다니고 있기도 하고, 무엇보다 결정적으로 휴학생 팀으로 나간 ICPC 2020 인터넷 예선에서 너무 처참한 성적을 받았기 때문입니다.

여러 대회를 운영하고 출제하고 검수하느라 바빴고, 게다가 solved.ac 개발로도 바빴던 나머지 제가 문제해결 연습을 할 시간이 부족해져서라고 생각했고, 지금은 다시 팀 연습도 하고 코드포스도 자주 나가고 BOJ 문제도 열심히 풀고 있습니다. 내년 대회에는 참가자로서 참여하고 싶습니다. 복학할 때 적의환향赤衣還鄕해서 레드시프트 이름값 해야죠.

이런 현실이… 이런 현실이 있단 말이냐?

결론은 내년 전대프연을 이끌어 주실 분을 모십니다. 뭐 없으면 어쩔 수 없고…

마치면서

전대프연과 UCPC에 특별한 관심을 갖고 지원해 주신 고려대학교 SW중심사업단, 마인즈랩네이버 D2, 그리고 알고스팟구종만님과 케니소프트박현민525hm님께 깊은 감사를 드립니다. 특히 예선 서버 문제로 새벽 코딩을 불사하며 끝까지 이슈 해결을 위해 수고해 주신, 전대프연의 초대 회장이자 이제는 스타트링크최백준baekjoon님께 각별한 감사를 드립니다.

검수는 물론 대회 운영 전반에 있어서 기술적으로 많은 도움을 주신 박수찬tncks0121님, 훌륭한 문제를 출제해 주신 김동현kdh9949님, 김창동sait2000님, 나정휘jhnah917님, 노영훈Diuven님, 모현ahgus89님, 문창현ckdgus2482님, 반딧불79brue님, 배근우functionx님, 심유근cozyyg님, 이동관windflower님, 이상헌evenharder님, 이종영moonrabbit2님, 정기웅QuqqU님, 조창민Ronaldo님, 그리고 열정적으로 검수해 주신 류호석rhs0266님과 홍은기pichulia님께 진심으로 감사의 말씀을 드립니다.

이외에도 대회 막바지에 운영에 큰 도움을 주신 공인호inh212님, 김영현kipa00님과, 실험적인 형태의 대회임에도 대회 진행자를 흔쾌히 맡아 주신 정재헌Gravekper님께도 대단히 감사드립니다.

마지막으로, UCPC 2020에 참가해 주신, 알고리즘 문제해결을 사랑해 주시는 참가자 여러분께 감사드립니다.


대회 리소스

다른 프로그래밍 대회를 개최하시는 데 도움이 될 수 있도록 UCPC 2020에서 사용된 자료들을 인터넷에 공개했습니다.

오픈소스

  • ucpcc/ucpc2020-site UCPC 2020 대회 사이트
    Jekyll로 제작한 정적 사이트입니다. 대회 공지사항 등을 적기 위해 만들었습니다.
  • ucpcc/problemsetting-guidelines UCPC 디스크립션 작성 및 포매팅 컨벤션
    UCPC 문제 제작을 위해 수립한 컨벤션입니다. 일관적인 데이터와 디스크립션 작성에 도움을 줄 수 있습니다.
  • ucpcc/ucpc2020-description-layout UCPC 2020 문제지 레이아웃
    마개조된 olymp.sty입니다. 2019 서강대학교 프로그래밍 대회 문제지 레이아웃을 바탕으로 제작했습니다.
  • ucpcc/ucpc2020-solutions-theme UCPC 2020 솔루션 Beamer 테마
    Beamer와 함께 사용할 수 있는 테마입니다.
  • ucpcc/ucpc2020-broadcast-scene UCPC 2020 방송 씬
    OBS가 씬에 웹 브라우저를 사용할 수 있다는 사실에 착안하여 React로 제작한 16:9 방송 씬입니다.

공유 문서

  • UCPC 2020 문제 출제 현황 시트
    대회 운영에 활용했던 출제 현황 시트 레이아웃입니다. 운영 당시 그대로의 시트는 아니고, 이해를 돕기 위해 체크박스 상황은 연출했으며 미사용 문제들은 다른 곳에서 사용될 수 있으므로 관련 정보를 지웠습니다. 사용하고자 하실 경우 파일 > 사본 만들기를 누르면 수정 가능한 사본을 만들어 사용해 주세요.

다른 글

SCPC 2020 2차 예선에 참가했습니다 (2/3)

2차 예선 – 750/1,000점

2차 예선에서 1, 2, 3, 5번을 풀어서 1,000점 만점에 750점을 받았습니다.

4번 문제보다 5번이 구현이 쉬워 보여서 5번을 먼저 해결했습니다. 이후 부분 점수를 보니 1번 + 2번 + 3번 + 4번 + 5번 47점 = 747점이었고, 이는 1번 + 2번 + 3번 + 5번 = 750점보다 적은 점수여서, 27위 안에 들었음을 확신하고 4번을 느긋하게 건들어 보다가 포기했습니다.

제 2차 1, 2, 3, 5번 풀이를 공유합니다. 4번 문제는 구현하지 않아서, 대략적인 아이디어만 갖고 있습니다.

2차 1번 – 실력 맞추기

각각 $N \leq 300\ 000$명의 멤버가 있는 A팀과 B팀이 있습니다. 멤버들은 각각의 실력 값을 갖고 있습니다. 이 때, A의 멤버를 최대 한 명까지 교체해서, A팀의 멤버 한 명과 B팀의 멤버 한 명씩을 매칭했을 때 전체 매칭의 실력 차의 합이 최소가 되게 하고 싶습니다.


두 가지 관찰을 할 수 있습니다.

  • A팀에서 멤버 교체가 일어나지 않는 경우에는, A팀의 실력 값과 B팀의 실력 값을 각각 정렬해서 큰 순서대로 한 명씩 매칭해주는 것이 최적임은 자명합니다.
  • 한 명을 교체하는 경우에는, 어떻게 교체하더라도 어떤 B팀 멤버가 있어서 그 멤버의 실력과 같도록 교체해 주는 것이 무조건 이득입니다. 그리고 이 경우 새롭게 매칭된 멤버들의 실력 차는 $0$입니다.

따라서 A팀에서 한 명을 교체한다기보다는, A팀과 B팀에서 한 명씩을 제외하고 나머지를 적절히 매칭하는 것을 생각할 수 있습니다. 이를 해결하기 위해 A팀과 B팀을 각각 정렬해 두고, 다음과 같은 다이나믹 프로그래밍을 생각할 수 있습니다.

  • $dp\left(i,0\right)$: A팀과 B팀의 $\left[0, i\right]$의 멤버들을 각각 매칭했을 때의 실력 차의 합의 최솟값.
    따라서 $dp\left(i,0\right) = dp\left(i-1,0\right) + \left|A_i-B_i\right|$입니다.
  • $dp\left(i,1\right)$: A팀 한 명을 제외하고, A팀의 $\left[0, i\right]$과 B팀의 $\left[0, i – 1\right]$의 멤버들을 각각 매칭했을 때의 실력 차의 합의 최솟값.
    따라서 $dp\left(i,1\right) = \min\left\{ dp\left(i-1,0\right), dp\left(i-1,1\right) + \left|A_i-B_{i-1}\right| \right\} $입니다.
  • $dp\left(i,2\right)$: B팀 한 명을 제외하고, A팀의 $\left[0, i – 1\right]$과 B팀의 $\left[0, i\right]$의 멤버들을 각각 매칭했을 때의 실력 차의 합의 최솟값.
    따라서 $dp\left(i,2\right) = \min\left\{ dp\left(i-1,0\right), dp\left(i-1,2\right) + \left|A_{i-1}-B_i\right| \right\} $입니다.
  • $dp\left(i,3\right)$: A팀과 B팀 중 각각 한 명씩을 제외하고, A팀과 B팀의 $\left[0, i\right]$의 멤버들을 각각 매칭했을 때의 실력 차의 합의 최솟값.
    따라서 $dp\left(i,3\right) = \min\left\{ dp\left(i-1,3\right), dp\left(i-1,1\right), dp\left(i-1,2\right) \right\}$입니다.

이를 전부 계산하고 나면, 정답은 $dp\left(n,0\right)$과 $dp\left(n,3\right)$ 중 작은 쪽이 됩니다. 저는 1-based index를 사용해 구현했습니다.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;

/* [t] [c] [s] */

int a[200001], b[200001];
ll dp[200001][4];

const ll inf = 1e18;

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios_base::sync_with_stdio(false);

    int t;
    cin >> t;
    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;

        int n;
        cin >> n;
        for (int i = 1; i <= n; i++) cin >> a[i];
        for (int i = 1; i <= n; i++) cin >> b[i];
        sort(a + 1, a + 1 + n);
        sort(b + 1, b + 1 + n);

        dp[1][0] = abs(a[1] - b[1]);
        dp[1][1] = 0; // ignore a[i - 1]
        dp[1][2] = 0; // ignore b[i - 1]
        dp[1][3] = 0;

        for (int i = 2; i <= n; i++) {
            dp[i][0] = dp[i - 1][0] + abs(a[i] - b[i]);
            dp[i][1] = min(dp[i - 1][0], dp[i - 1][1] + abs(a[i] - b[i - 1])); // ignore a[i - 1]
            dp[i][2] = min(dp[i - 1][0], dp[i - 1][2] + abs(a[i - 1] - b[i])); // ignore b[i - 1]
            dp[i][3] = min({dp[i][1], dp[i][2], dp[i - 1][3] + abs(a[i] - b[i])});
        }

        cout << min(dp[n][0], dp[n][3]) << endl;
    }

    return 0;
}

2차 2번 – 고구마

고구마 $N\leq 300\ 000$개가 일렬로 길게 연결되어 있습니다. 각 고구마의 가격은 $-10^{12} \leq A_i \leq 10^{12}$로 정해져 있습니다. 음수는 상품가치가 없어 발생하는 처리 비용입니다.

$M$만큼의 예산이 있어, 연결되어 있는 고구마 덩어리를 적절히 잘라 중간 덩어리를 사 가려고 합니다. 덩어리의 크기는 중요하지 않으나, 한 덩어리만 사갈 수 있습니다. 이 때 고구마를 적절히 잘라서, 예산 $M$을 넘지 않으면서 최대한 비싸게 사가고 싶습니다.

요약하면, 최대 구간합maximum subarray sum 문제인데, 합이 $M$보다 작거나 같으면서 최대한 큰 경우를 찾아야 합니다.


제한조건 때문에, 선형 시간에 최대 구간합 문제를 해결하는 Kadane’s 알고리즘은 사용할 수 없습니다. 다만 최대 구간을 구해야 한다는 점에서 구간합 배열prefix sum array을 이용해 접근해볼 수 있습니다.

구간합 배열 $P$를 만든 후, 현재 보고 있는 인덱스가 $i$라면, $P_i-P_j \leq M$이면서 $j < i$에 대해 $P_i-P_j$의 최댓값을 구해 주면 됩니다. 이는 std::set 자료 구조에 이전 인덱스까지의 구간합들을 전부 집어넣고, $\mathcal{O}\left(\log n\right)$이 걸리는 std::set::lower_bound을 사용해 쉽게 해결할 수 있습니다. 이유는 모르겠지만 저는 대회 당시에는 std::set::upper_bound를 사용해 구현했습니다.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;

/* [t] [c] [s] */

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios_base::sync_with_stdio(false);

    int t;
    cin >> t;
    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;

        int n;
        ll m;
        cin >> n >> m;

        set<ll> s;
        s.emplace(0);
        ll mx = 0, prf = 0;
        for (int i = 0; i < n; i++) {
            ll x;
            cin >> x;
            prf += x;
            s.emplace(prf);
            ll v = *s.upper_bound(prf - m - 1);
            mx = max(mx, prf - v);
        }

        cout << mx << endl;
    }

    return 0;
}

2차 3번 – 아르바이트

안타깝게도 디스크립션이 정확히 기억나진 않는데요, $N \leq 200\ 000$ 크기의 배열 $A$가 주어지고, 특정 인덱스의 값을 바꾸는 연산을 $Q\leq 2\ 000$번 하려고 합니다. 이 때 각각의 연산마다 $A$의 길이 $K \leq \min\left\{200,N\right\}$의 모든 부분 배열의 구간합에 대해, 이들의 중앙값을 구해야 합니다. 단 가능한 부분 배열의 개수가 짝수 개라면, 중앙에 있는 두 값 중 더 큰 값을 구해야 합니다.


계속 변화하는 중앙값을 구해야 하는 문제로 BOJ 1572번이 있습니다. 이 문제의 경우 저는 크기가 같은 std::multiset을 두 개 만들어 두고, 한 쪽의 집합의 모든 원소가 다른 쪽의 집합의 모든 원소보다 작도록 유지해두는 방식으로 해결했습니다. 제 1572번 소스 코드는 여기에서 볼 수 있습니다.

원래 배열에 대한 생각은 접어 두고, 구간합들이 저장된 배열이 있다고 생각해 봅시다. 원래 배열에서 한 개의 원소가 바뀌면 구간합 배열에서는 최대 $K$개의 원소가 바뀝니다. $K \leq \min\left\{200,N\right\}$라는 조건 때문에, 전부 나이브하게 처리해 줘도 최대 $KQ \leq 400\ 000$번밖에 바뀌지 않으니 위와 같은 방법으로 열심히 짜면 맞을 수 있을 것이라 생각했고, 시간 초과를 받았습니다.

std::multiset의 삽입/삭제 연산의 복잡도는 $\mathcal{O}\left(\log n\right)$이지만, 상수가 크기 때문에 사용에 주의를 요합니다. 상수 커팅을 위해 다소 특이할 수 있는 세그먼트 트리를 생각해내 해결했습니다.

BOJ 1572번의 해법과 비슷하게, $mxt$와 $mnt$라는 세그먼트 트리를 각각 만들었습니다. $mxt$는 최댓값 세그먼트 트리, $mnt$는 최솟값 세그먼트 트리이며, 항상 $\max mxt \leq \min mnt$가 되도록 관리합니다. 그런데 이렇게 관리하려면, 만약 $\max mxt > \min mnt$일 때 $mxt$의 최댓값을 $mnt$의 최솟값과 바꿔 줘야 하고, 또한 특정 인덱스 $i$에 대해 값 업데이트도 가능해야 합니다.

이를 위해 트리의 노드에는 최대/최솟값과, 그 최대/최솟값이 들어 있는 배열에서의 인덱스를 저장하도록 했습니다. 또한, 랜덤 액세스를 쉽게 하기 위해, 두 세그먼트 트리의 크기는 $N-K+1$로 고정해 두고, 노드에 저장된 값이 $-1$인 경우 이 트리의 이 인덱스에 값이 존재하지 않음을 의미하도록 했습니다.

정해인지는 잘 모르겠습니다. 어떻게 잘 하면 느리게 갱신lazy propagation하는 테크닉을 섞어서 좀 더 빠르게 할 수도 있을 것 같기도 한데, 아래 코드도 만점을 받아서 더 이상 생각을 하지 않기로 했습니다.

들리는 말로는 크기 $NK$의 펜윅 트리로도 해결할 수 있다고 합니다. 하긴 펜윅이 빠르긴 빠르니까요.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;

/* [t] [c] [s] */

struct node {
    int i, v;

    node() : i(0), v(0) {}

    node(int i, int v) : i(i), v(v) {}

    bool operator<(const node &rhs) const {
        return v < rhs.v;
    }
};

node mnt[524288], mxt[524288];
int a[200001], val[200001], vals[200001];
ll prf[200001];
int tn, mxs, mns;

node minimum() { return mnt[1]; }

node maximum() { return mxt[1]; }

node argmin(const node &lhs, const node &rhs) {
    if (lhs.v == -1) return rhs;
    if (rhs.v == -1) return lhs;
    return min(lhs, rhs);
}

node argmax(const node &lhs, const node &rhs) {
    if (lhs.v == -1) return rhs;
    if (rhs.v == -1) return lhs;
    return max(lhs, rhs);
}

void setn(int i, int v, int x = 1, int s = 0, int e = tn - 1) {
    if (s == e && s == i) {
        mnt[x].v = v;
        return;
    }
    if (i <= (s + e) / 2) {
        setn(i, v, x * 2, s, (s + e) / 2);
    } else {
        setn(i, v, x * 2 + 1, (s + e) / 2 + 1, e);
    }
    mnt[x] = argmin(mnt[x * 2], mnt[x * 2 + 1]);
}

void setx(int i, int v, int x = 1, int s = 0, int e = tn - 1) {
    if (s == e && s == i) {
        mxt[x].v = v;
        return;
    }
    if (i <= (s + e) / 2) {
        setx(i, v, x * 2, s, (s + e) / 2);
    } else {
        setx(i, v, x * 2 + 1, (s + e) / 2 + 1, e);
    }
    mxt[x] = argmax(mxt[x * 2], mxt[x * 2 + 1]);
}

void update(int i, int dx, int x = 1, int s = 0, int e = tn - 1) {
    if (s == e) {
        if (mxt[x].v != -1) mxt[x].v += dx;
        if (mnt[x].v != -1) mnt[x].v += dx;
        return;
    }
    if (i <= (s + e) / 2) {
        update(i, dx, x * 2, s, (s + e) / 2);
    } else {
        update(i, dx, x * 2 + 1, (s + e) / 2 + 1, e);
    }
    mxt[x] = argmax(mxt[x * 2], mxt[x * 2 + 1]);
    mnt[x] = argmin(mnt[x * 2], mnt[x * 2 + 1]);
}

void init(int x = 1, int s = 0, int e = tn - 1) {
    if (s == e) {
        mnt[x].i = mxt[x].i = s;
        if (s >= tn / 2) {
            mxt[x].v = -1, mnt[x].v = vals[s];
            mns++;
        } else {
            mnt[x].v = -1, mxt[x].v = vals[s];
            mxs++;
        }
        return;
    }
    init(x * 2, s, (s + e) / 2);
    init(x * 2 + 1, (s + e) / 2 + 1, e);
    mxt[x] = argmax(mxt[x * 2], mxt[x * 2 + 1]);
    mnt[x] = argmin(mnt[x * 2], mnt[x * 2 + 1]);
}

bool exchange() {
    const auto mx = maximum(), mn = minimum();
    if (mx.v <= mn.v) return false;
    // set mntree
    setn(mn.i, -1);
    setn(mx.i, mx.v);
    // set mxtree
    setx(mx.i, -1);
    setx(mn.i, mn.v);
    return true;
}

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios_base::sync_with_stdio(false);

    int t;
    cin >> t;

    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;

        int n, k, q;
        cin >> n >> k >> q;
        tn = n - k + 1;

        for (int i = 1; i <= n; i++) {
            cin >> a[i];
            prf[i] = prf[i - 1] + a[i];
        }

        for (int i = k; i <= n; i++) {
            val[i - k + 1] = prf[i] - prf[i - k]; // [1, n - k + 1]
            vals[i - k] = val[i - k + 1];
        }

        init();
        while (exchange());

        cout << minimum().v << ' ';
        while (q--) {
            int i, v;
            cin >> i >> v;
            int d = v - a[i];
            for (int j = max(0, i - k); j < min(i, tn); j++) {
                update(j, d);
            }
            while (exchange());
            cout << minimum().v << ' ';
            a[i] = v;
        }
        cout << endl;
    }

2차 4번 – 안전운전

도로의 왼쪽, 오른쪽 경계와 운전 경로가 주어집니다. 도로 정보와 운전 경로는 선분들로 이루어져 있으며, 각각 $x$축 또는 $y$축과 평행합니다. 이 때, 운전 경로 중 특정한 가로선 하나 이하에 대해, 그 이후의 경로를 적절히 선대칭시켜서, 도로 안에 포함된 운전 경로의 세로선들의 길이의 합이 최대가 되게 하고 싶습니다. 단, 선대칭 이후의 도로 경로가 더 길어져서는 안 됩니다.


좌표 압축 후 위에서부터 아래로 내려오면서 스위핑 or 1차 4번과 비슷한 식의 세그먼트 트리를 이용하면 풀릴 거라고 생각했습니다. 하지만 1, 2, 3, 5번을 해결한 시점에서 이미 2차 예선 26위 이상임이 확정되었기 때문에 구현하다 포기했습니다.

2차 5번 – 삼각형의 거리

꼭지점 $N \leq 300$개의 단순다각형simple polygon이 있습니다. 오목할 수도 있습니다. 이 다각형의 꼭지점들을 이어 전부 삼각형으로 분할하고자 합니다.

어떤 삼각형에서 다른 삼각형과 맞닿은 변만을 통해 이동한다고 할 때, 삼각형 간의 거리를 정의할 수 있습니다. 예를 들어, 현재 삼각형과 맞닿아 있는 삼각형까지의 거리는 1이 됩니다. 처음 주어진 다각형을 잘 분할해서, 두 삼각형 사이의 최대 거리가 최소가 되도록 하고 싶습니다.


이 문제의 Small 셋의 경우, 다각형이 볼록다각형이므로 ICPC 2019 Korea Regional J번과 같은 문제입니다. 실제 대회에서 제가 First Solve로 해결했던 문제라 기억에 잘 남아 있던 것이 도움이 되었습니다.

다각형의 삼각 분할은 모든 노드의 $\deg \leq 3$인 트리로 나타낼 수 있습니다. 삼각 분할을 트리로 나타냈을 때, 이 트리의 지름을 최소화하는 문제가 됩니다.

주어진 도형을 어떤 대각선 하나로 자르면, 그 대각선 오른쪽에 만들어질 삼각형은 대각선 왼쪽에 만들 삼각형과 무조건 이어집니다. 이걸 바탕으로 2차원 다이나믹 프로그래밍을 생각해볼 수 있습니다. 현재 $i$번째 점 $P_i$부터 $j$번째 점 $P_j$까지만을 사용해 만든 도형이 있고, $\overline{P_iP_j}$는 어떤 다른 삼각형과 맞닿아있다고 생각해 봅시다. 한 쪽이 뚫려 있는 다각형이라고 생각하면 됩니다. 아래 그림의 핑크색 부분이 되겠네요.

이제 $dp \left(i,j\right)$를 핑크색 도형을 어떻게 잘 삼각분할했을 때 $\overline{P_iP_j}$에서 다른 삼각형까지의 최단 거리라고 정의합시다. 그러면 모든 $i<k<j$에 대해, 삼각형 $P_iP_jP_k$가 원래 다각형 안에 포함되는 경우 그 삼각형으로 분할한 뒤 재귀적으로 DP 문제를 해결할 수 있겠습니다.

따라서 $P_iP_jP_k$가 삼각형이 되는 모든 $i<k<j$들의 집합을 $K_{ij}$라 하면, 최단 거리는 $\overline{P_iP_k}$ 쪽에서 오거나 $\overline{P_kP_j}$ 쪽에서 오는 두 가지 경우가 있으므로, $dp\left(i,j\right)$는 다음과 같이 구할 수 있습니다.

\[dp\left(i,j\right)=\begin{cases} 0 & \textrm{if } i+1=j \\ \min_{k \in K_{ij}} \left\{ dp\left(i,k\right),dp\left(k,j\right) \right\}+1 & \textrm{otherwise} \end{cases}\]

하지만 이걸로는 트리의 지름을 구하기엔 역부족입니다. 왜냐하면, 이 다이나믹 프로그래밍의 경우 $\overline{P_iP_k}$에서 $\overline{P_iP_j}$ 쪽으로, $\overline{P_kP_j}$에서 $\overline{P_iP_j}$ 쪽으로 가는 건 고려하고 있지만, $\overline{P_iP_k}$에서 $P_iP_jP_k$를 거쳐 다시 $\overline{P_kP_j}$ 쪽으로 나가는 경로는 고려하지 못하고 있기 때문입니다.

점화식을 다시 정의해 봅시다. 어떤 값 $d$가 있어서, $dp_d \left(i,j\right)$를 다음과 같이 정의합니다.

\[dp_d\left(i,j\right)=\begin{cases} 0 & \textrm{if } i+1=j \\ \min_{k \in K_{ij}} \left\{ dp_d\left(i,k\right),dp_d\left(k,j\right) \right\}+1 & \textrm{if } dp_d\left(i,k\right)+dp_d\left(k,j\right) \leq d \\ \infty & \textrm{otherwise}\end{cases}\]

이제 이 점화식을 이용해 $dp_d\left(0,n-1\right)$를 구했고 그 값이 $\infty$가 아니라면, 트리의 지름이 $d$ 이하가 되도록 다각형을 삼각 분할할 수 있다는 뜻이 됩니다. 이제 이분 탐색으로 $d$의 최소값을 결정할 수 있습니다.

다이나믹 프로그래밍 한 번에 $\mathcal{O}\left(n^3\right)$이고, $0 \leq d \leq n-3$이므로 총 $\mathcal{O}\left(n^3 \log n\right)$만에 문제를 해결할 수 있습니다. 어떤 대각선이 오목다각형 안에 있는지 아닌지 판정하는 방법은 여러 가지가 있으나 문제의 포커스는 이게 아닌 것 같으므로 스킵하도록 합시다.

대회가 끝나고 안 사실인데 이 문제를 해결하는 논문이 있었다고 합니다.

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;

/* [t] [c] [s] */

struct point {
    int x, y;

    point() : x(0), y(0) {}

    point(int x, int y) : x(x), y(y) {}

    point operator*(const int &rhs) const {
        return {x * rhs, y * rhs};
    }

    point operator+(const point &rhs) const {
        return {x + rhs.x, y + rhs.y};
    }

    point operator-(const point &rhs) const {
        return *this + (rhs * -1);
    }
};


int ccw(const point &a, const point &b, const point &c) {
    point bb = b - a, cc = c - a;
    ll t = (ll) bb.x * cc.y - (ll) cc.x * bb.y;
    return t ? (t > 0 ? 1 : -1) : 0;
}

bool intersects(const point &la, const point &lb, const point &ma, const point &mb) {
    if (ccw(la, lb, ma) * ccw(la, lb, mb) != -1) return false;
    if (ccw(ma, mb, la) * ccw(ma, mb, lb) != -1) return false;
    return true;
}

point A[300];

const int inf = 1e8;

int dp[300][300], dg[300][300];

bool diag(int i, int j, int n) {
    if (i > j) swap(i, j);
    if (dg[i][j] != -1) return dg[i][j];
    if (i == j || i + 1 == j) return dg[i][j] = false;
    if (i == 0 && j == n - 1) return dg[i][j] = false;

    for (int v = 0, u = n - 1; v < n; u = v++) {
        if (intersects(A[i], A[j], A[u], A[v])) return dg[i][j] = dg[j][i] = false;
    }

    point V1 = A[(i + 1) % n] - A[i], V2 = A[(i + n - 1) % n] - A[i], V3 = A[j] - A[i];
    ll a = (ll) V1.x * V2.y - (ll) V1.y * V2.x;
    ll b = (ll) V1.x * V3.y - (ll) V1.y * V3.x;
    ll c = (ll) V3.x * V2.y - (ll) V3.y * V2.x;
    bool in = (a >= 0 && b >= 0 && c >= 0) || (a < 0 && !(b < 0 && c < 0));
    if (!in) return dg[i][j] = dg[j][i] = false;
    return dg[i][j] = dg[j][i] = true;
}

int f(int i, int j, int d, int n) {
    if (i + 1 == j) return dp[i][j] = 0;
    if (!(i == 0 && j == n - 1) && !diag(i, j, n)) return dp[i][j] = inf;
    if (dp[i][j] != -1) return dp[i][j];

    dp[i][j] = inf;

    for (int k = i + 1; k < j; k++) {
        if (!(i + 1 == k || diag(i, k, n))) continue;
        if (!(k + 1 == j || diag(k, j, n))) continue;
        if (f(i, k, d, n) + f(k, j, d, n) > d) continue;
        dp[i][j] = min(dp[i][j], max(f(i, k, d, n), f(k, j, d, n)) + 1);
    }

    return dp[i][j];
}

bool sat(int d, int n) {
    memset(dp, -1, sizeof dp);
    return f(0, n - 1, d, n) != inf;
}

int g(int x) {
    if (x == 3) return 0;
    if (x == 4) return 1;
    if (x == 5) return 2;
    return g((x + 1) / 2) + 2;
}

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios_base::sync_with_stdio(false);

    int t;
    cin >> t;

    for (int _ = 1; _ <= t; _++) {
        cout << "Case #" << _ << endl;

        int n;
        cin >> n;

        memset(dg, -1, sizeof dg);

        for (int i = 0; i < n; i++) {
            cin >> A[i].x >> A[i].y;
        }

        if (n == 3) {
            cout << 0 << endl;
            continue;
        }

        int l = g(n), h = n - 3;
        while (l < h) {
            int m = (l + h) / 2;
            if (sat(m, n)) {
                h = m;
            } else {
                l = m + 1;
            }
        }
        cout << l << endl;
    }

    return 0;
}

회사 프로젝트에서 KaTeX를 한 번 사용해 본 이후로 제 블로그의 모든 수식을 KaTeX로 바꾸고 있습니다. 렌더 속도가 훨씬 빨라졌고, 모바일에서 수식 자동 줄바꿈이 잘 됩니다. 개인적으로는 여러 면에서 MathJax보다 좋은 라이브러리라고 생각합니다.

SCPC 2020 1차 예선에 참가했습니다 (1/3)

1차 예선 – 600/800점

1차 예선에서 1, 2, 3, 4번을 풀어서 800점 만점에 600점을 받았습니다. 부분 점수는 못 받았습니다.

다음 날 수술이 있었고, 4번까지 풀고 나니 새벽이어서 5번은 안 풀고 잤습니다. 전체적으로 디스크립션이 난해한 느낌이라 안타까웠습니다.

제 1차 1, 2, 3, 4번 풀이를 공유합니다.

1차 1번 – 다이어트

A 식당과 B 식당이 있고, 이 식당에는 각각 $N \leq 50\ 000$개의 메뉴가 있습니다. 이 메뉴들의 칼로리 값들이 주어집니다. $K$일동안 매일 A에서 한 끼를, B에서 한 끼를 먹을 때, 하루에 먹은 칼로리의 양의 최댓값이 최소가 되게 하고 싶습니다.


A 식당에서의 최대 칼로리의 음식을 순서대로, B 식당에서 최소 칼로리의 음식을 순서대로 $K$일간 하나하나 그리디하게 매칭해 주면 됩니다.

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;

/* [t] [c] [s] */

int a[200000], b[200000];

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios_base::sync_with_stdio(false);

    int tt;
    cin >> tt;
    for (int _ = 1; _ <= tt; _++) {
        cout << "Case #" << _ << "\n";

        int n, k;
        cin >> n >> k;

        for (int i = 0; i < n; i++) cin >> a[i];
        sort(a, a + n);
        for (int i = 0; i < n; i++) cin >> b[i];
        sort(b, b + n);
        int mx = 0;
        for (int i = 0; i < k; i++) mx = max(mx, a[i] + b[k - i - 1]);
        cout << mx << '\n';
    }


    return 0;
}

1차 2번 – 카드 게임

$N \leq 3\ 000$개의 카드가 쌓여 있는 두 덱 X와 Y가 있습니다. 각 카드에는 $K \leq 3\ 000$ 이하의 양의 정수가 적혀 있습니다. 두 명이 번갈아 카드를 가져가는데,

  • 꼭 한 개의 덱을 선택해서 위에서부터 한 장 이상을 가져가야 하며,
  • 가져간 카드의 합이 $K$ 이하여야 하고,
  • 마지막으로 카드를 가져가는 사람이 집니다.

내 턴에 덱 X에 $i$장의 카드가, 덱 Y에 $j$장의 카드가 남아 있는 상태를 $\left(i,j\right)$라고 한다면, $N$과 $K$가 정해져 있는 게임에 대해 중간 상태로 가능한 경우는 총 $\left(N+1\right)^2$개입니다. 각각의 상태에서 두 플레이어가 각각 최선의 방법으로 플레이했을 때 내가 반드시 이기는 경우와 반드시 지는 경우의 갯수를 세고 싶습니다.


Grundy number를 바로 떠올릴 수 있겠지만, 아쉽게도 마지막으로 카드를 가져가는 사람이 지는 게임(misère)이기 때문에 Grundy를 쓸 수 없습니다. Grundy로 접근하기 전에 ‘이게 1차 예선 2번에 나올 수 있을 만한 지식인가?’를 생각해 볼 필요가 있습니다.

대신 다이나믹 프로그래밍으로 접근할 수 있습니다.

  • 현재 상태 $\left(i,j\right)$에서 내가 어떤 덱에서 얼마나 많이 가져가더라도 다음 플레이어가 이기는 상태만 나온다면, 현재 상태는 내가 지는 상태입니다.
  • 그렇지 않다면, 내가 특정한 동작을 하면 다음 플레이어가 지는 상태를 만들 수 있습니다. 이런 경우 현재 상태는 내가 이기는 상태입니다.

따라서, DP 테이블을 만들어둔 후 가져간 카드의 합이 $K$ 이하가 되도록 X에서 하나씩, Y에서 하나씩 가져가면서 다음 플레이어가 이기는 상태가 있는지 확인해 주면 됩니다. 이 계산을 $\left(N+1\right)^2$개에 대해 하므로, $\mathcal{O}\left(N^3\right)$입니다.

$N \leq 3\ 000$이므로 Large 셋을 풀기에는 불충분합니다. 이는 Prefix sum을 이용해 $\mathcal{O}\left(N^2\right)$로 최적화할 수 있습니다.

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;

/* [t] [c] [s] */

int x[3010], y[3010], xp[3010], yp[3010], xi[3010], yj[3010];
bitset<3010> dp[3010];
int prs[3010][3010];

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios_base::sync_with_stdio(false);

    int tt;
    cin >> tt;
    for (int _ = 1; _ <= tt; _++) {
        cout << "Case #" << _ << "\n";

        memset(dp, 0, sizeof dp);
        dp[0][0] = true;

        int n, k;
        cin >> n >> k;

        for (int i = 1; i <= n; i++) {
            cin >> x[i], xp[i] = x[i] + xp[i - 1];
            int v = xp[i] - k - 1;
            int ii = upper_bound(xp, xp + i, v) - xp;
            xi[i] = ii;
        }
        for (int j = 1; j <= n; j++) {
            cin >> y[j], yp[j] = y[j] + yp[j - 1];
            int v = yp[j] - k - 1;
            int jj = upper_bound(yp, yp + j, v) - yp;
            yj[j] = jj;
        }

        int a = 0, b = 0;
        for (int i = 0; i <= n; i++) {
            for (int j = 0; j <= n; j++) {
                int xc = (prs[i][j + 1] - prs[xi[i]][j + 1] - prs[i][j] + prs[xi[i]][j]);
                int yc = (prs[i + 1][j] - prs[i + 1][yj[j]] - prs[i][j] + prs[i][yj[j]]);

                dp[i][j] = ((i - xi[i]) - xc) || ((j - yj[j]) - yc);
                dp[0][0] = true;
                (dp[i][j] ? a : b)++;
                prs[i + 1][j + 1] = dp[i][j] + prs[i][j + 1] + prs[i + 1][j] - prs[i][j];
            }
        }

        cout << prs[n + 1][n + 1] << ' ' << (n + 1) * (n + 1) - prs[n + 1][n + 1] << endl;
    }


    return 0;
}

1차 3번 – 사다리 게임

$N \leq 1\ 500$개의 세로선과 $K \leq 2\ 000$개의 가로선이 있는 사다리가 있습니다.

$M \leq 100\ 000$개의 쿼리가 들어옵니다. $\left(i,j\right)$의 형태입니다. 위의 $i$번 위치에서 시작해서 아래의 $j$번 위치에서 끝나도록 가로선을 적절히 없애 사다리를 조작하고 싶은데, 가로선을 최소한으로 없앴을 때 몇 개 없애야 하는지를 구해야 합니다.

Kotlin Heroes: Episode 4의 E번 문제와 상당히 비슷합니다.


가로선들이 그래프의 간선들이라고 생각하고 접근해서 최단 거리 문제로 해결했습니다.

$u$와 $v$를 잇는 가로선이 있다면, 가로선을 무시하는 경우($u \rightarrow u$, $v \rightarrow v$)를 가중치 $1$로, 무시하지 않는 경우($u \rightarrow v$, $v \rightarrow u$)를 가중치 $0$으로 하여 간선 $4$개로 만들어 줍니다.

정점은 $N$개를 처음에 만들어 주고, 가로선을 하나 처리할 때마다 가로선의 끝점에 각각 하나씩, 총 $2$개를 더 만들어 줍니다. 이렇게 그래프를 구성하면 노드는 총 $N+2K \leq 5\ 500$개가 됩니다.

이렇게 하면 각 시작점마다 Dijkstra 혹은 0-1 BFS를 돌리는 것으로 각 종점까지의 최단거리를 구하면, 그것이 시작점에서 종점까지 가면서 제거해야 하는 가로선의 개수의 최댓값이 됩니다. 이 방법을 이용해 쿼리 값들을 전부 전처리해둔 후, 쿼리가 들어오는 대로 전처리된 값들을 출력해 주려고 합니다.

만들어 준 그래프의 정점은 $N+2K$개, 간선은 $4K$개이므로 0-1 BFS의 경우 한 번에 $\mathcal{O}\left(N+K\right)$, Dijkstra의 경우 한 번에 $\mathcal{O}\left(K \log K\right)$입니다. 이를 모든 시작점에 대해 한 번씩 돌려주면 0-1 BFS의 경우 $\mathcal{O}\left(N^2+NK\right)$, Dijkstra의 경우 $\mathcal{O}\left(NK \log K\right)$만에 해결할 수 있습니다. 저는 그냥 Dijkstra로 해결했습니다.

DP로도 해결할 수 있다고 합니다.

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;

/* [t] [c] [s] */

pii seg[2000];
int last[1500], dist[1500][1500], dtemp[9000];
bitset<9000> vis;

void dijk(int s, const vector<vector<pii>> &graph) {
    memset(dtemp, -1, sizeof dtemp);
    vis.reset();
    priority_queue<pii> pq;
    dtemp[s] = 0;
    pq.emplace(0, s);
    while (pq.size()) {
        int u = pq.top().second, d = -pq.top().first;
        pq.pop();
        if (dtemp[u] < d) continue;
        if (vis[u]) continue;
        vis[u] = true;
        for (const auto &kv : graph[u]) {
            int v = kv.first, c = kv.second;
            if (dtemp[v] == -1 || dtemp[u] + c < dtemp[v]) {
                dtemp[v] = dtemp[u] + c;
                pq.emplace(-dtemp[v], v);
            }
        }
    }
}

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios_base::sync_with_stdio(false);

    int tt;
    cin >> tt;
    for (int _ = 1; _ <= tt; _++) {
        cout << "Case #" << _ << "\n";

        memset(dist, -1, sizeof dist);

        int n, k, q;
        cin >> n >> k >> q;

        vector<vector<pii>> graph(n);
        for (int i = 0; i < n; i++) last[i] = i;

        for (int i = 0; i < k; i++) {
            cin >> seg[i].first >> seg[i].second;
            seg[i].first--, seg[i].second--;
        }

        for (int i = 0; i < k; i++) {
            const auto &l = seg[i];
            int gn = graph.size();
            graph[last[l.first]].emplace_back(gn, 1);
            graph[last[l.second]].emplace_back(gn + 1, 1);
            graph[last[l.first]].emplace_back(gn + 1, 0);
            graph[last[l.second]].emplace_back(gn, 0);
            last[l.first] = gn;
            last[l.second] = gn + 1;
            graph.emplace_back();
            graph.emplace_back();
        }

        for (int i = 0; i < n; i++) {
            graph[last[i]].emplace_back(graph.size(), 0);
            last[i] = graph.size();
            graph.emplace_back();
        }

        for (int i = 0; i < n; i++) {
            dijk(i, graph);
            for (int j = 0; j < n; j++) dist[i][j] = dtemp[last[j]];
        }

        int s = 0;
        while (q--) {
            int u, v;
            cin >> u >> v;
            u--, v--;
            s += dist[u][v];
        }
        cout << s << endl;
    }

    return 0;
}

1차 4번 – 범위 안의 숫자

0에서 9까지의 숫자 $n \leq 50\ 000$개로 이루어진 문자열 $t$가 주어집니다. 길이가 $k \leq \min\left\{9,n\right\}$인 부분 문자열들을 수라고 생각하고, 모두 수직선 위에 둡니다.

이 때, 여기서 최대 한 글자까지를 1로 바꿔서, 어떤 정수 $a$에 대해 길이가 $m \leq 10^9$인 구간 $\left[a,a+m\right]$ 안에 속한 수의 개수의 최댓값이 최대가 되게 하고 싶습니다. 이 때의 최댓값을 구해야 합니다.


일단 $k$가 커봐야 $9$고, $n$도 그렇게 크지 않아서, 문자 하나를 1로 바꿀 수 있다는 것을 배제하고 생각하면 이 문제는 스위핑으로 해결할 수 있습니다. 부분 문자열의 값을 $x_i$라고 하면, 선분 $\left[x_i,x_i+m\right]$들을 수직선 위에 깔아 두고 가장 많이 겹쳤을 때의 선분의 갯수를 구하면 됩니다.

이제 문자 하나를 1로 바꿀 수 있는 경우를 생각해봅시다. ‘문자 하나를 1로 바꾸는 것’이라는 행위에서 관찰 가능한 특별한 성질은 딱히 없다고 느꼈습니다. 다만, 문자 하나를 1로 바꾸면 다시 만들어줘야 하는 선분의 개수는 $9$개에 불과하다는 사실에 집중했습니다.

만약 다이나믹하게 선분을 제거하고 추가할 수 있는 스위핑이 있다면, 모든 위치의 숫자를 하나하나 1로 바꾸고 되돌리는 행위를 한다고 해도 추가/제거는 $\mathcal{O}\left(kn\right)$번만 일어나므로 시간 안에 해결할 수 있을 것 같습니다.

다행히도 그런 스위핑은 존재하는데요, 최댓값을 구하는 연산과 구간에 덧셈을 하는 연산(lazy propagation 등)을 수행 가능한 세그먼트 트리로 가능합니다.

다만 인덱스가 꽤 크기 때문에 다이나믹 세그먼트 트리를 구현하거나, 가능한 값들을 전부 좌표 압축한 후 처리하는 방법을 사용해야 합니다. 저는 후자로 구현했습니다. 총 시간 복잡도는 $\mathcal{O}\left(kn \log kn\right)$입니다.

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;

/* [t] [c] [s] */

ll tree[1048576 * 2], lazy[1048576 * 2];

int c;

void _propagate(int x, int s, int e) {
    if (!lazy[x]) return;
    tree[x] += lazy[x];
    if (s != e) {
        lazy[x * 2] += lazy[x];
        lazy[x * 2 + 1] += lazy[x];
    }
    lazy[x] = 0;
}

ll _maximum(int x, int s, int e, int l, int r) {
    _propagate(x, s, e);
    if (l > e || r < s) return 0;
    if (l <= s && e <= r) return tree[x];
    int m = (s + e) / 2;
    return max(_maximum(x * 2, s, m, l, r),
               _maximum(x * 2 + 1, m + 1, e, l, r));
}

void _update(int x, int s, int e, int l, int r, ll dv) {
    _propagate(x, s, e);
    if (l > e || r < s) return;
    if (l <= s && e <= r) {
        tree[x] += dv;
        if (s != e) {
            lazy[x * 2] += dv;
            lazy[x * 2 + 1] += dv;
        }
        return;
    }
    int m = (s + e) / 2;
    _update(x * 2, s, m, l, r, dv);
    _update(x * 2 + 1, m + 1, e, l, r, dv);
    tree[x] = max(tree[x * 2], tree[x * 2 + 1]);
}

ll maximum(int l, int r) {
    return _maximum(1, 0, c - 1, l, r);
}

void update(int l, int r, ll dv) {
    _update(1, 0, c - 1, l, r, dv);
}

ll zip(ll x, const vector<ll> &a) {
    return lower_bound(a.begin(), a.end(), x) - a.begin();
}

ll v[50000], v1[50000][10];

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios_base::sync_with_stdio(false);

    int tt;
    cin >> tt;
    for (int _ = 1; _ <= tt; _++) {
        cout << "Case #" << _ << "\n";

        ll n, k, m;
        cin >> n >> k >> m;
        string t;
        cin >> t;

        // init values
        vector<ll> ps;
        ll curr = 0, mod = 1;
        for (int i = 0; i < k; i++) mod *= 10;
        for (int i = 0; i < k; i++) curr *= 10, curr += t[i] & 15, curr %= mod;
        for (int i = k; i <= n; i++) {
            v[i - k] = curr;
            ps.emplace_back(curr);
            ll l = curr, r = 0, p = 1;
            for (int j = 0; j < k; j++) {
                v1[i - k][j] = (l / 10 * 10 + 1) * p + r;
                ps.emplace_back(v1[i - k][j]);
                l /= 10, r += (curr / p) % 10 * p, p *= 10;
            }
            if (i == n) break;
            curr *= 10, curr += t[i] & 15, curr %= mod;
        }
        int ts = ps.size();
        for (int i = 0; i < ts; i++) ps.emplace_back(ps[i] + m);

        sort(ps.begin(), ps.end());
        ps.erase(unique(ps.begin(), ps.end()), ps.end());

        memset(tree, 0, sizeof tree);
        memset(lazy, 0, sizeof lazy);
        c = ps.size();
        // query
        for (int i = 0; i <= n - k; i++) {
            update(zip(v[i], ps), zip(v[i] + m, ps), 1);
        }

        ll mx = maximum(0, ps.size() - 1);

        for (int i = 0; i < n; i++) { // replace i-th number to 1
            // remove
            for (int j = 0; j < k; j++) {
                if (i - k + j < 0 || i - k + j > n - k) continue;
                update(zip(v1[i - k + j][j], ps), zip(v1[i - k + j][j] + m, ps), -1);
            }
            if (i <= n - k) {
                update(zip(v[i], ps), zip(v[i] + m, ps), -1);
            }
            // add
            if (i - k >= 0) {
                update(zip(v[i - k], ps), zip(v[i - k] + m, ps), 1);
            }
            for (int j = 0; j < k; j++) {
                if (i - k + 1 + j < 0 || i - k + 1 + j > n - k) continue;
                update(zip(v1[i - k + 1 + j][j], ps), zip(v1[i - k + 1 + j][j] + m, ps), 1);
            }
            // query
            mx = max(mx, maximum(0, ps.size() - 1));
        }
        cout << mx << endl;
    }

    return 0;
}

2019 서강대학교 프로그래밍 대회를 개최했습니다

제목이 곧 내용, 올해 서강대학교 교내대회를 개최했습니다. 제가 출제와 운영을 총괄했습니다! 진짜 구데기컵 2018(…)을 제외하면 제 첫 출제였고, UCPC 2018에 풍선 스탭으로 참여한 걸 제외하면 첫 운영이었습니다. 대회를 준비하고 진행하면서 느낀 점들을 적어보려 합니다.

어떤 걸 먼저 해야 하지

서강대학교의 경우 2005년부터 매년, ICPC Korea Regional에서 교내 랭킹 1~2위의 팀이 대회 운영과 출제를 해왔습니다. 대회는 보통 11월 말이고 ICPC 본선은 11월 초에 진행되기 때문에 보통 2~3주 정도의 준비 기간이 주어집니다. 아니 대회 운영하려면 뭐가 필요한지도 모르는데 2주만에 대회 준비를 어떻게 해요??

근데 사람 일이 다 그렇듯이 놀랍게도 대회 날짜가 다가오면 준비를 하게 되어 있더라고요. 학교에서 ICPC 본선에 3팀이 출전했는데, ‘그래도 우리 팀이 그 중에서 적어도 2위는 하겠지?’ 라는 행복회로를 돌리면서 김칫국 109 + 7사발 마시고 미리 대회 개최를 준비했습니다.

대회를 열기 위해 필요한 것들은 대략 다음과 같습니다.

  • 문제. 문제 푸려고 여는 대회인데 문제가 없으면 안 되죠.
    • 출제진. 애초에 출제진이 없으면 문제가 나올 수가 없죠.
    • 검수진. 물론 출제진이 검수해도 괜찮습니다.
  • 시간과 공간. 언제 어디서 개최할지 결정해야 합니다.
  • 참가자. 이건 제가 어쩔 수가 없고..
  • 포스터, 풍선, 간식 같은 거

이 중에 제가 그 시점에 할 수 있었던 건 문제 만들기였습니다. Redshift가 본선 교내 1~2등 안에 들면 세 명 모두 출제를 해야 했기에, 일단은 팀 내에서 문제를 뭐 낼지 어렴풋이 생각해 보기로 했습니다. 대충 이런 문제 아이디어가 나왔습니다.

  • 7-세그먼트 디스플레이 (shiftpsh 아이디어)
    • 개인적으로 좋은 문제라고 생각했어서 제네레이터까지 만들어 뒀습니다.
  • 올솔브 방지용 graph isomorphism 문제 (shiftpsh 아이디어)
    • Tree isomorphism 문제로 약화되어 출제되었습니다. 이거 오렌지 이상에선 웰노운이라더라고요. 왜 내가 웰노운이 아니라고 생각했던 건 다 웰노운이지??
  • 최단 경로 문제인데, 길이의 곱이 최단이 되어야 하기 때문에 간선 가중치에 전부 로그를 씌워 구하는 문제 (lvalue 아이디어)
    • 방콕 리저널 예비소집일에 나온 아이디어였는데, 다음날 본대회 F번?으로 실제로 나와버렸기 때문에 표절 의혹을 받을까봐 실제 대회에는 못 냈습니다.
    • 이 아이디어 덕분에 대회 당시 F번을 두번째로 빨리 푼 팀이 우리 팀이었는데, 역설적이게도 대회를 말아먹는 계기가 되었습니다. 이건 다른 포스트에 후술.

다행히도 Seoul Regional에서 교내 1등을 하는 데 성공했기 때문에 대회 운영에 참여할 수 있게 되었고, 이제 아까 언급한 ‘대회 운영에 필요한 사항’ 4개 전부를 고려해야 하는 상황이 되었습니다.

문제

각자 내고 싶은 문제들은 있겠지만, 실제로 모두가 각자 내고 싶은 문제만 낸다면 프로그래밍 대회가 아니라 빡구현 코딩테스트가 될 수도 있고, 고인물 자료구조 파티가 될 수도 있고, 계산수학 경시대회가 될 수도 있겠다고 생각했습니다. 그래서 아래와 같은 원칙을 두고 대회 문제들의 전체적인 틀을 정했습니다.

  • 출제되는 문제들의 주제는 균형적이어야 합니다.
    • 12문제 중 DP가 5문제고 그러면 좀.. (ICPC Seoul 예선 출제자님 듣고 계신가요)
  • 모든 문제를 푸는 사람은 없어야 하고 하나도 못 푸는 사람이 있어서는 안 됩니다.
    • ICPC 출제 기조라고 들었습니다.

개인적으로는 tree isomorphism 문제를 너무 내고 싶었기 때문에 디비전 당 8문제, 총 16문제를 내기로 정했습니다. 지금 생각해보면 그러지 말거나 아니면 디비전끼리 겹치는 문제를 내게 하거나 했어야 했는데 아무튼 그렇게 정했습니다.

구데기컵에서 문제 정리를 위한 스프레드시트를 팠던 기억이 있어서 저도 그렇게 했습니다.

쉬운그래프문제하나만더있으면좋겠다

20문제를 낸 후, 각각 solved.ac 기준 예상 난이도와 사용 알고리즘/자료구조를 적고 8개 문제씩 Champion/Master에 각각 배정해나가면서, 대회가 너무 어려워질 것 같아서 많이 등장한 주제의 문제 중 4문제를 뺐습니다. 그리고 동그라미를 하나씩 채워나가는 방향으로 문제를 준비했습니다.

예상 난이도를 정하는 것에 장점과 단점이 있었는데요,

  • 장점은 문제를 배정하기가 쉬웠다는 점이었고,
  • 단점은 문제 난이도를 잘못 예상해서 Master 디비전 스코어보드가 망했다는 점이었습니다.
    • 출제자 생각과 참가자 생각은 많이 다르다는 걸 깨달았고, 조금 더 참가자 입장에서 문제 난이도를 생각해 보려고 노력해야겠다고 느꼈습니다.

문제들을 배정하고 나서는 스테이트먼트와 정해 – 데이터와 테스트 – 제한 순서대로 문제를 만들었습니다.

스테이트먼트

참가자 입장에서 스테이트먼트는 명료할수록 좋습니다. 러시아의 모 사이트에서 열리는 대회에는 스테이트먼트가 애매하거나 이상한 경우가 종종 있었는데, 이로 인해 스트레스를 받은 경험이 있었기 때문에, 참가자가 문제를 푸는 데 방해가 되지 않도록 스테이트먼트를 구성하려고 노력했습니다. 출제 의도가 스테이트먼트를 길게 해서 일부러 문제풀이를 지연시키고자 하는 게 아니라면 쓸데없는 이야기는 줄이고 문법상의 오류나 비문은 최대한 없애고, 문장은 짧게 구성하도록 하고. 사실 글쓰기의 기본이죠.

스테이트먼트 원고는 각자 작성하고 Stack에 옮기면서 수정했습니다

아래는 카드 놓기의 스테이트먼트 원고와 최종본을 비교해 둔 것입니다.

첫번째 줄에는 N(1<=N<=1000000)이 주어진다.
두번째 줄에는 길이가 N인 수열 A가 주어진다.
Ai가 1이면 i번째로 카드를 내릴 때 1번 기술을 썼다는 뜻이다.
Ai가 2이면 i번째로 카드를 내릴 때 2번 기술을 썼다는 뜻이다.
Ai가 3이면 i번째로 카드를 내릴 때 3번 기술을 썼다는 뜻이다.
Ai는 1,2,3중 하나임이 보장된다.
An은 항상 1임이 보장된다.
첫 번째 줄에는 N (1 ≤ N ≤ 106)이 주어진다.
두 번째 줄에는 길이가 N인 수열 A가 주어진다. Aix이면, i번째로 카드를 내려놓을 때 x번 기술을 썼다는 뜻이다. Ai는 1, 2, 3 중 하나이며, An은 항상 1이다.

위와 아래 중 어떤 글이 더 이해하기 쉬운가요? (아래라고 해주세요)

  • 1000000은 한 눈에 봤을 때 정확히 얼마인지 가늠하기 어렵기 때문에, 1,000,000 또는 106으로 고쳐야 합니다.
  • <=은 정확한 표현이 아니기 때문에 ≤으로 고칩니다. 변수명은 일반적인 글과 구분하기 쉽게 하기 위해 기울임꼴으로 씁니다. 기울임꼴로 하는 편이 실제 수식에서 등장하는 문자들의 모양과 비슷하기도 하고요.
  • 쉼표로 나열된 항목들은 띄어쓰기로 구분해 줍니다(1,2,3 → 1, 2, 3).
  • 같은 의미의 글이 여러 번 반복되는 경우 간단하게 줄일 수 있는지 생각해 봅니다.

스테이트먼트를 그냥 읽어보면 모르겠지만, 계속 긴장 상태일 참가자 분들의 입장에서 편하게 읽힐 수 있도록 이렇게 나름대로 세심하게 편집하는 작업을 거쳤습니다.

대농부 김상혁
평행우주

또한 글만 적혀 있으면 문제를 이해하는 데 어려움이 있을 수도 있기 때문에 몇몇 문제에는 적절한 위치에 삽화들을 그려서 삽입했습니다. 다행히도 제가 그래픽 디자인을 할 줄 알았기 때문에 삽화는 제가 전부 그렸습니다.

정해

출제자의 정해가 틀리면 안 됩니다. 최근 열렸던 학교 대회 중에 출제자가 잘못된 풀이를 작성한 경우가 종종 있었고, 서강대학교만 해도 2017년에 출제자가 정해를 잘못 작성했던 적이 있었습니다. 특히 대회 준비 중에 열린 타 대학교 대회에서 이런 상황이 발생했기 때문에 각별히 신경써서 검수했습니다.

이건 어쩔 수 없지

학과에서는 외부 검수자를 초빙하지 말라고 했지만 2주 안에 16문제를 출제해야 하는데 출제 경험이 적은 6명이 오류를 안 내는 게 이상한 상황이었고, 결정적으로 스타트링크에서 검수자 초빙을 말 그대로 강력하게 권장했기 때문에 제 단독 판단으로 검수자를 초빙하기로 했습니다. 여러 대회에 검수자로 참가했던 분들이었기에 문제 보안에 대해서는 믿을 수 있었으며, 개인적으로는 잘못된 문제를 만들지 않는 것이 더 중요하다고 생각했기 때문입니다.

아니나다를까 색깔 하노이 탑 문제에서 출제자의 정해가 잘못되었음이 외부 검수자에 의해 발견되어 일찍 수정할 수 있었습니다. 검수자 분들께서는 후술할 데이터와 시간 제한에 대한 검증도 진행해 주셨습니다. 외부 검수자 분들께서 안 계셨다면 이번 대회도 문제 오류가 있는 대회가 될 뻔 했는데, 참 다행이라고 생각합니다. 이 글을 빌어 감사하다는 말씀을 다시 한 번 전해드리고 싶습니다.

데이터와 테스트

저는 Polygon을 이용해 데이터를 만들었습니다. Polygon은 Codeforces에서 프로그래밍 문제 제작을 도와주는 목적으로 만든 플랫폼입니다. 다음과 같은 것들이 가능합니다.

  • 데이터 생성 및 관리
  • 입출력 형식 검증
  • 출력 가능한 스테이트먼트 PDF 제작

특히 입력 형식의 무결성은 상당히 중요하기 때문에 Polygon을 사용합니다. 예를 들어 평행우주는 입력이 다음 조건을 만족함이 보장되어야 합니다.

  • 입력으로 들어오는 각각의 그래프는 연결되어 있어야 하며 트리여야 합니다. 노드가 s개라면 노드 번호는 0, 1, 2, …, s − 1로 주어져야만 합니다.
  • 입력으로 들어오는 트리의 개수는 106개 이하여야 합니다. 각 트리의 노드의 개수는 30개 이하여야 합니다. 또한 모든 트리의 노드 개수의 합도 106개 이하여야 합니다.
  • 당연하겠지만, 입력의 각 줄마다 맨 앞이나 맨 뒤에 공백 문자가 있어서는 안 되고, 공백이 두 개 들어가 있다거나, 맨 마지막 줄에 줄바꿈이 없다거나 하는 경우도 안됩니다. C/C++로는 어찌저찌 잘 풀릴지도 모르지만 Java와 Python에서 제대로 풀리지 않을 수 있기 때문입니다.

testlib.h는 위와 같은 무결성 체커를 간단하게 짤 수 있도록 해 줍니다. 또한 Polygon은 이렇게 짠 무결성 체커를 바탕으로 데이터를 제작할 때 모든 데이터에 대해 생성과 동시에 자동으로 무결성 체크를 해 주기 때문에 다른 더 중요한 것들에 집중할 수 있게 해 줍니다.

Polygon에 등록되어 있는 서강 프로그래밍 대회 문제들

testlib.h는 데이터 생성기를 제작할 때도 사용할 수 있습니다. 안타깝게도 다른 출제자 분들께서는 Polygon 사용 경험이 없었고, 출제 시간도 2주로 상당히 촉박해서 급한 대로 testlib.h를 쓰지 않는 제네레이터를 만들었습니다. 실제로 도중에 입력 조건에 맞지 않는 데이터가 업로드되었는데, 무결성 체커가 없어서 찾아내기 어려웠습니다. 다행히도 대회 직전에 찾아서 삭제했습니다.

하지만 Polygon 자체도 문제 제작자가 짠 코드에 의존하기 때문에, 대부분의 실수를 잡아낼 수 있다고 하더라도 잡아내기 어려운 실수들도 있습니다. 가령 평행우주의 경우는 날 새가면서 정신없이 문제를 만들다 보니 제가 10만과 106을 헷갈렸나 봅니다. 문제에는 별의 수와 별자리의 수가 106을 넘지 않는다고 되어 있습니다만 실제로는 각각이 105을 넘지 않는 약한 데이터만을 준비했던 사실을 시상식 때가 되어서야 깨달았습니다.

데이터 자체는 무결했으니 문제나 데이터의 오류는 아니었지만, 의도하지 않은 풀이가 통과할 수도 있었던 상황이었습니다. 대회 당시 맞은 사람이 없었어서 다행이었을까요? 곧 데이터를 추가할 예정입니다.

제한

시간 제한과 메모리 제한

의도한 풀이는 통과하고, 의도하지 않은 풀이는 통과하지 않도록 제한을 잘 설정해야 합니다. 그런데 이게 은근 어려운 게,

  • 언어마다 실행 시간에 차이가 있습니다.
    • Python에서 최적의 솔루션이 동작하는 시간이 C++에서 나이브한 솔루션이 동작하는 시간보다 느릴 수도 있습니다.
  • 같은 언어의 같은 풀이라도 입력 방식에 따라 실행 시간에 많은 차이가 생깁니다.
    • 느린 입력 방식 기준으로 시간 제한을 설정하면, 빠른 입력 방식을 사용했지만 느린 알고리즘을 사용한 코드가 시간 안에 통과하는 상황이 생길 수도 있습니다.

solved.ac는 어떤 방식으로 정렬을 해도 괜찮은 문제이지만, 원래는 인덱스 소트를 이용해 O(n)으로 정렬해야만 하는 문제로 기획되었습니다. 그래서 기존에는 제한이 n ≤ 107이었습니다. 하지만 C++에서 빠른 입력을 쓰고 std::sort를 사용한 코드가 500ms 좀 넘게 돈 반면, Java에서 인덱스 소트를 이용한 코드가 800ms가 나오길래, 그냥 포기하고 쉽게 바꿨습니다.

작년 대회와 다르게 이번 대회에서는 Python을 사용할 수 있도록 했지만 정작 모든 문제가 Python으로 풀릴 것이라고 보장하지는 않았습니다. 대회 규칙에는 ‘출제진이 모든 문제를 C++과 Java 혹은 Kotlin으로 풀었음이 보장됩니다’라고 적었고, 실제로 C++과 Java 혹은 Kotlin으로 모든 문제를 검증했으나 Python으로는 풀리지 않는 문제도 있었습니다. Python은 현저히 느리기 때문에 Python 기준으로 시간 제한을 잡으면 C++ 나이브 코드가 통과할 수도 있기 때문이었습니다. 이는 ICPC World Finals 규칙과도 같습니다.

메모리 제한은 전부 1024MB로 설정했습니다. 여러 테스트를 돌려 보면서 틀린 코드가 맞거나 맞은 코드가 틀리는 등의 상황이 발생하면 제한을 조절하거나 데이터를 보강하는 등의 작업을 진행하면서 문제를 완성시켜 나갔습니다.

완성된 시트

그렇게 시트를 전부 동그라미로 만든 후에는 한 숨 돌릴 수 있었습니다.

운영

문제를 다 만들어갈 때쯤에는 대회 운영에 대한 것도 생각해야 했습니다. 다행히도 학과에서 다년간 대회 운영을 도와주고 계셨기 때문에 이런 것들은 별 고민 없이 해결되었습니다.

대회 진행 전

  • 장소. 실습실은 학교가 관리하고 있기 때문에 대여도 학과에서 처리해 주셨습니다.
  • 풍선. 역시 학과에서 지원해 주셨습니다.
    • 헬륨 풍선이 생각보다 비쌌습니다. 하나에 1,500원이었는데, 대회 끝나고 못 나눠준 풍선은 다 터뜨려야 한다고 생각하니 좀 안타까웠습니다.
  • 간식. 이것도 학과에서 지원해 주셨습니다.

포스터는 학과에서 인쇄만 해 주기 때문에 제가 만들어야 했습니다. 팀노트에 있던 디닉 코드를 가져와서 3시간동안 간단히 만들었습니다.

애프터 이펙트로 간단하게 배경을 만들고
포토샵으로 글씨를 얹었습니다

학내 이곳저곳에 포스터를 붙이고, 참가자는 학교 커뮤니티에 게시글을 올려 모집했습니다. 총 91분께서 참가 신청을 해 주셨습니다. 안타깝게도 당일에 안/못 오신 분들이 많아서 실제 대회 당일에는 약 70분 가량 참여해주셨습니다.

이미지
문제지

문제지도 만들었습니다. 문제지는 LATEX로 타입세팅해 대회 전날에 인쇄했습니다. 학과사무실에서 인쇄해 제본과 운반을 전부 수작업으로 했는데, 대회 운영 중 가장 힘들었던 일이 아니었을까 싶습니다.

대회 당일

이미지
데스크

대회 당일 운영은 순조로웠습니다. 다만 실습실에 PyCharm과 IntelliJ를 설치하느라 시간이 오래 걸렸는데, 전날에 미리 설치해 뒀다면 좋았겠다 싶었습니다. 실습실이어서 학생들이 작성한 코드가 남아 있었고 이들을 전부 지우기 위해 현장에서 배치 파일(.bat)을 급조해 모든 컴퓨터에서 돌렸습니다.

이미지
이 많은 풍선들 중 단 하나만이 참가자의 손에 들어갔다는 슬픈 소식

풍선을 나눠주려면 자리표가 있어야 편한데 이 사실을 간과했습니다. 자리표도 현장에서 가나다순으로 급조했습니다. 이런저런 일들로 인해 대회 초반에 풍선이 늦게 나가는 일이 있었습니다.

Champion 디비전은 별 일이 없었지만 Master 디비전 스코어보드는 꽤 오랫동안 많은 사람들이 1솔브에서 머물러 있었습니다. B번 문제의 난이도를 잘못 생각했음을 직감했습니다. 다음날 진행된 Open Contest에서도 B번 문제가 많이 풀리지 않았습니다. 심지어 ainta님은 A~P를 전부 푼 후 마지막에 B를 푸셨을 정도.

많은 사람들이 겹받침이 등장할 때 도깨비불 현상이 일어난다는 걸 간과한 듯했고, 대회가 시작한 후 꽤 지나서 공지사항으로 추가 테스트 케이스를 제공했습니다. 이 테스트 케이스 덕분에 B를 맞게 된 분들이 몇 분 계셨지만 애초에 Master B번으로 낼 만한 수준의 문제가 아니었다는 걸 생각하지 못했던 건 아쉬움으로 남습니다. 초보자에게 문자열 처리는 생각보다 어려운 주제인가 봅니다.

대회 운영진은 참가자의 소스코드를 전부 읽어볼 수 있기 때문에, 채점 현황에서 여러 코드를 읽어봤습니다. 혹시 맞는 코드인데 틀린 건 아닌지, 틀린 코드인데 맞은 건 아닌지 등을 확인하기 위해서입니다. 코드를 확인하다 보니 cout << fixed를 하지 않아 문제를 아깝게 틀린 경우도 있었습니다. 안타까웠지만 어쩔 수 없었습니다.. 다행히도 틀린 코드가 통과하거나 맞은 코드가 통과하지 않는 경우는 없었습니다.

Master는 A, B, D, G, H의 5문제가, Champion은 A, B, C, D, F의 5문제가 각각 풀렸습니다. Champion 쪽은 제가 예상한 대로였으나 Master에서 문제가 많이 풀리지 않아 아쉬웠습니다. 과연 모두 재밌게 즐길 수 있을 만한 대회였을까요? Champion은 그랬던 것 같습니다. 안타깝게도 Master는 난이도 예상을 너무 잘못했던 것 같습니다.


이후 오픈 콘테스트도 순조롭게 진행되었고, 문제 오류는 딱히 없었기 때문에 바로 문제들을 공개했습니다. 제가 출제해 제일 어려운 문제로 기획했던 평행우주가 문제 공개 후 (고인물들에게) 나름대로의 인기를 끌고 있어 뿌듯합니다. 그렇다고 내년 ICPC Seoul Regional에 tree isomorphism이 나오는 걸 보고 싶진 않은데요.. 뭐 여하튼.

대회 운영과 문제 출제가 생각보다 어려운 것임을 깨닫게 해 준 계기가 되었습니다. 좋은 대회를 여는 건 정말 힘들다는 것도요. 생각해야 될 게 정말 많았습니다. 제가 했던 고민들이 대회를 여시려고 하시는 분들께 도움이 되었으면 좋겠습니다.

내년엔 아마도 회사에 가게 되기 때문에, 대회 출제는 3년 후에나 다시 하게 될 것 같습니다. 그 때는 난이도 조절에 조금 더 신경을 쓰고 싶습니다. 같이 출제해 주신 서강대학교 학우님들, 검수를 도와주신 분들과 참가자 분들께 모두 감사드립니다.

solved.ac 개발기 2: 더 많은 사람이 쓸 수 있게 해 보기

이 글은 solved.ac 개발기 1: 학회에서 사용할 서비스 만들기에서 이어집니다.

학회에서 사용할 수 있을 만한 서비스가 드디어 완성되었습니다. 하지만 안타깝게도 서강대학교에는 PS를 잘하는 사람이 그렇게 많지 않습니다.

Theorem 1. 서강대학교 구성원만으로 BOJ 문제들에 난이도를 일관되게 많이 달기는 힘들다.

Lemma 1. 서강대학교에는 PS를 잘하는 사람이 그렇게 많지 않다.

Proof of lemma. 애초에 시프트부터가 PS를 못한다. ∎

Proof of theorem. By Lemma 1, it’s trivial. ∎

집단지성으로 난이도를 붙이려는 시도는 이렇게 무너지고 마나요? 아니죠, 집단이 충분히 커지면 괜찮아요.

기존에 짜여 있었던 갱신 로직은 단체 랭킹 페이지를 긁어와서 갱신하기 쉽도록 되어 있었고, 더구나 전체 유저를 스크레이핑할 경우 서비스 자체가 차단될 수도 있겠다고 생각했기에, 일단은 랭킹 페이지가 있는 단체들에 제공하면 좋겠다고 생각했습니다. 다른 많은 학교들과 함께 기여해 나가면 됩니다.

집단지성

다만, 학회에서 쓸 거라고 생각했기에 신경쓰지 않은 부분이 많았습니다. 일단 전 포스트에서 언급했듯이 푼 문제 정보를 업데이트하는 속도가 초당 150문제밖에 되지 않았습니다.

오늘 기준으로 서강대학교 학생들이 맞은 문제 수를 전부 합히면 80,989문제입니다. 초당 150문제라면, 9분만에 처리할 수 있는 수준입니다. 갱신 주기가 1시간이라면 봐줄 수 있는 갱신 시간이죠.

서울의 대학교 지도

하지만 여기에 맞은 문제 132,249개의 서울대학교가 추가된다면 어떨까요? 거기에 더해 다른 학교가 열 곳, 스무 곳 이상씩 추가된다면? 아마 업데이트 시간으로 1시간은 턱없이 부족할 겁니다. 분명히 갱신 시간을 더 줄일 수 있을 텐데, 줄일 구석은 어디에 있을까요?

갱신 시간

갱신 작업은 여러 개의 작은 작업들로 나눌 수 있습니다.

문제 리스트 스크레이핑해서 문제 목록 받아오기
→ 단체 랭킹 리스트 스크레이핑해서 유저 목록 받아오기
→ 유저 페이지 스크레이핑해서 맞은 문제 목록 받아오기
→ 맞은 문제 정보를 토대로 경험치 계산
→ 맞은 문제 정보를 solved.ac 서버로 전송

줄일 구간이 어떤 게 있을까 하고 각각 단계별로 걸리는 시간을 계산해봤습니다.

  • 스크레이핑은 단체 랭킹이나 유저 페이지나, 1페이지당 1초를 넘기지 않았습니다(300ms~700ms). 다만 한 단체를 400명이라고 했을 때 단체 내의 모든 유저 페이지를 스크레이핑하는 건 약 3.6분 가량이 걸렸습니다.
  • 특히 문제 목록 스크레이핑은 전체 문제 페이지가 160페이지 가량이다 보니, 전부 스크레이핑하는 데 약 1~2분 정도가 걸렸습니다.
  • 경험치 계산도 오래 걸리지 않았습니다. 전체 문제 목록을 스크레이핑할 때 문제 난이도 정보도 solved.ac에서 가져왔기 때문입니다. 전체 문제 m개의 목록과 유저가 맞은 문제 n개의 목록은 모두 정렬된 상태였기 때문에, O(m)만에, 그리고 n이 충분히 작다면 O(n log m)만에 경험치를 계산할 수 있습니다. 2,000문제 가량을 맞은 제 유저 페이지를 기준으로, 경험치를 계산하는 데 겨우 13ms 가량이 걸렸습니다.
  • 맞은 문제 정보 갱신은 생각보다 오래 걸렸습니다. 위에서 언급했듯이 초당 150문제를 처리할 수 있는데, 제 페이지의 경우 1350ms 가량이 걸렸습니다.

결국 한 번 업데이트하는 데 맞은 문제 정보 갱신유저 페이지 스크레이핑, 그리고 문제 목록 스크레이핑 순서로 많은 시간을 쓰고 있음을 알 수 있었습니다. 경험치를 계산하는 로직에서는 더 줄일 수 있는 게 딱히 보이지 않았습니다. 이걸 어떻게 줄일 수 있을까요?

문제 목록 스크레이핑

‘이건 줄일 수 있겠다!’고 생각한 것 중 가장 먼저 생각난 것은 문제 목록 스크레이핑이었습니다. BOJ에는 1만 6천개 가량으로 많은 문제들이 있지만, 그렇다고 해도 문제가 1시간 단위로 추가되거나 하지는 않기 때문이죠.

그래서 다소 시간이 걸리는 문제 스크레이핑은 사용자 수가 가장 적을 매일 오전 6시에만 하도록 했습니다.

-reload 플래그가 있으면 문제 목록을 업데이트하게 했습니다

이를 통해 일단 2분 가량을 아낄 수 있었습니다.

유저 페이지 스크레이핑

지난 1시간 동안 푼 문제가 없는데도 업데이트를 해야 할까요? 푼 문제가 없다면 업데이트하지 않아도 되지 않을까요?

유저 페이지 스크레이핑 시간을 줄이려면 유저 페이지 자체를 들어가지 않아야 합니다. 다행히도 유저 페이지를 들어가지 않고도 푼 문제 수가 변했는지 확인할 수 있습니다. 애초에 랭킹 페이지를 스크레이핑해 오기 때문인데요,

학교 랭킹 페이지

랭킹 페이지에는 다행히도 맞은 문제 수와 제출 수가 있습니다. 이를 서버에 캐싱해 두고, 변동이 있을 경우에만 유저 페이지에 직접 들어가서 스크레이핑합니다. 참고로 재채점 등으로 인해 맞은 문제 수가 줄어들 수도 있으므로 맞은 문제 수와 제출 수를 동시에 확인해야 해요.

BOJ가 가장 활성화되는 시간인 오후 12시~1시 사이에도, 서강대학교에서는 8% 이하의 유저만이 맞은 문제 수 또는 제출 수에 변화가 있었습니다. 이런 식으로 모든 유저가 항상 BOJ를 붙들고(?) 있진 않기 때문에, 이 방법을 적용하고 스크레이핑 시간을 현저히 줄일 수 있었습니다. 학교 당 12배 정도였습니다. 게다가 BOJ 서버에 전송하는 리퀘스트 수도 획기적으로 줄이는 효과를 누렸습니다.

맞은 문제 정보 갱신

가장 많은 시간이 걸렸던 맞은 문제 정보 갱신 로직도 시간을 줄일 수 있었습니다. DB에 수많은 레코드들을 업데이트하는 건 시간이 꽤 걸리므로, solved.ac에 저장된 맞은 문제 정보와 스크레이핑해온 맞은 문제 정보를 가져와서, 차이가 있는 것들만 DB에 넣어주도록 바꿨습니다.

예를 들어 이런 경우라면 1004번과 8481번만 DB에 업데이트해 주면 됩니다.

유저 정보를 처음 가져올 때는 여전히 많은 시간이 걸렸지만, 한 명이 한 시간에 몇백 개의 문제를 풀 리가 없으므로 (과연?) 처음 유저 정보를 가져온 이후에는 푼 문제 수에 비해 엄청나게 적은 레코드를 업데이트하게 되어 갱신 시간이 상당히 줄어들게 되었습니다.

이 세 가지 방법을 적용했더니, 결과적으로 390명을 9분만에 처리하는 수준에서 8,000명을 평균적으로 5분만에 처리하는 수준까지 개선할 수 있었습니다. 처리 속도가 약 37배 빨라진 셈입니다. 이 방법을 적용하고 나서, 홍익대학교, 서울대학교, KAIST 등의 순서로 차례차례 학교를 등록해 나갔고 지금 현재 37개의 단체가 별 무리없이 갱신되고 있습니다.

하지만 현재 업데이트되는 사용자 규모는 10,000명 정도에 불과하고, BOJ 전체 유저는 16만 명 정도이므로 전체 사용자를 대상으로 갱신한다면 아마 이걸로도 부족할 것입니다. BOJ에 리퀘스트를 날리면서, 동시에 맞은 문제 차이를 계산하고, 동시에 solved.ac 서버에 업데이트하도록 백엔드를 파이프라인화시키는 것도 고려하고 있으나 애초에 서버의 vCPU 수가 2개밖에 안 되는지라 효과적일지는 모르겠네요..

여담으로, solved.ac 한 달 광고 수익은 제가 2,500원짜리 학식 라면을 꼭 5번 먹을 수 있을 정도에 불과해요. 저도 중학생 때 캐놓은 비트코인 같은 거라도 있었더라면 좋았겠네요 ㅠ


고려하지 못했던 것

그렇게 많은 학교를 추가하고 한동안 여러 기능들을 추가하면서 평화롭게(?) 지냈습니다. 모든 기능이 문제없이 잘 돌아가고 있었습니다. 근데 원래 모든 게 잘 돌아가면 어딘가 불안해집니다. 저만 그런가요?

아무튼 그렇게 매일 새벽까지 개발하고 늦잠 자고 아침강의도 없겠다 늦게 일어나고 하는 평화로운 나날을 보내고 있었습니다. 이런 메시지를 받기 전까지는요.

아니 대체 왜?

갑자기 로그인이 안 될 이유가 딱히 없는데 로그인이 안 된다고 합니다. 음 뭐지?

No space left on device라고 합니다. df 명령어로 남은 공간을 확인해봤는데 공간은 아직 많이 남아 있습니다. 진짜 뭐지??

구글링 끝에 알게 되었습니다. ext4 파일시스템에는 파일의 메타데이터를 저장하는 inode가 있는데, 이 수에 제한이 있다고 합니다. df -hi로 inode 사용량을 분석할 수 있습니다.

역시 inode 사용량이 가득 찼던 거였습니다. Inode가 가득 찼다는 건 파일을 엄청 많이 만들었다는 뜻이 될 거 같은데, 파일을 그렇게 많이 만든 적이 없었던 거 같은데 대체 어느 부분에서 이렇게 되었을까요?

바로 세션 정보들이었습니다. 세로로 긴 이미지 하나 보고 갑시다.

많이 삭제한 게 이 정도입니다.’

세션 파일이 몇백만 개나 있었습니다. 이 세션 파일들이 inode 개수를 다 잡아먹고 있었습니다.

커스텀 세션 핸들러

불행 중 다행으로 PHP는 세션 핸들러를 직접 만드는 게 가능했습니다. 기존 세션 파일들을 전부 삭제하고, MySQL을 사용하는 세션 핸들러를 만들어 교체해 줬더니 세션들이 전부 DB에 저장되었고, inode 폭발 현상이 다시 일어나는 일은 없었습니다.


다음에 한가할 때는 프론트엔드를 짜면서 했던 고민들에 대해 이야기해 보고자 합니다. 최근 solved.ac에 제출된 난이도 의견 수가 12,000건을 넘겼습니다. 학회에서만 사용하려고 했는데 어쩌다 보니 여기까지 올 수 있게 되었습니다. 사이트에 관심 가져 주셔서 정말로 감사하고, 알고리즘 문제해결을 공부하는 사람들의 길잡이가 될 수 있는 좋은 커뮤니티 프로젝트가 되도록 노력을 아끼지 않겠습니다.

감사합니다!

solved.ac 개발기 1: 학회에서 사용할 서비스 만들기

병역특례 인원이 축소된다는 분위기입니다. 알 수 없는 위기감이 맴돕니다. Sogang ICPC Team에서 (학회장 한다는 사람이 없으면) 제가 졸업할 때까지 학회장을 하려고 했는데, 지금 병역 문제를 해결하지 않으면 졸업한 후에 어떻게 될 지 모르기 때문에 이번 학기를 마치고 산업기능요원으로 가기로 결심했습니다. 누가 뽑아줘야 가겠지만..,

여하튼 학회장으로 있으면서 해 보고 싶은 일은 많았는데, 당장 이번 학기가 끝나고 제가 사라지게 되어서 가장 해 보고 싶었던 일을 해 보리라 마음먹었습니다.

TMI가 많습니다(이거 동어반복인가요?). 각오하시고 읽어 주세요!

acm이 icpc와 관련 없는 단체가 되어서 지금은 학회 이름이 ‘Sogang ICPC Team’이 되었습니다.

Sogang ICPC Team은 서강대학교 컴퓨터공학과의 알고리즘 문제해결 소학회입니다. 알고리즘 문제해결 학회라면 목적에 맞게 알고리즘 문제들을 해결해야겠죠? 우리 학회는 Baekjoon Online Judge(BOJ)라는 플랫폼을 문제은행으로 쓰고 있습니다.

문제는 BOJ가 다 좋은데 ‘문제 난이도’라는 지표가 없다는 것입니다. 애초에 BOJ에는 여러 대회들에서 가져온 14,000개가 넘는 문제들이 등록되어 있고, 이 수많은 문제들에 일관된 난이도 기준으로 난이도를 매기는 건 상당히 어렵기 때문일 것입니다.

하지만 ‘문제 난이도’라는 정보가 없어서 처음 시작한 학회원들이 공부를 시작하기가 어려웠습니다. 물론 jh05013님의 단계별로 풀어보기도 있지만 단계별로 문제가 그렇게 많진 않아서 충분히 연습하기는 곤란했습니다. 대신 문제집을 만들 수는 있어서, 지금까지 우리 학회는 수많은 문제들을 대략적인 난이도 그룹으로 나누고 문제집을 많이 만들어 이런 식으로 관리하고 있었습니다.

네 저 그리디 못해요

이 방법은 처음엔 좋았으나 문제집이 추가될수록 여러가지 문제가 생겼습니다.

  • 문제집이 너무 많아졌습니다. 지금 학회 그룹에 등록된 문제집 수는 64개입니다.
  • 한 문제집에는 문제를 100개까지밖에 못 넣습니다. BOJ에는 다이나믹 프로그래밍 문제만 500개가 넘게 있습니다.
  • 문제를 푼 직후 문제집에 문제 하나를 추가하려면 적어도 다섯 번은 클릭해야 합니다.(‘그룹’ – ‘ICPC Team’ – ‘문제집’ – ‘수정’ – ‘확인’) 생각보다 상당히 번거로운 작업입니다.

결국 문제 하나하나에 난이도를 매길 수 있는 크롬 확장 프로그램을 만들자는 결론에 다다랐습니다. 더 나아가서 푼 문제들의 난이도에 따라 개개인마다 레벨을 부여한다면 문제를 풀 동기도 마련해 줄 수 있겠다는 생각이 들었습니다. 당장 착수했습니다.

첫 버전

시험기간 버프로 이틀만에 첫 버전이 나왔습니다. PHP로 간단하게 백엔드를 만들었습니다. 크롬 플러그인은 예전에 만들어 본 적 있어서 어렵지 않게 새로 만들 수 있었습니다.

문제 목록. 지금 쓰는 난이도 아이콘이 없었고, 전부 텍스트였습니다.

난이도 투표 스크린입니다. 역시 디자인은 신경쓰지 않았습니다.

작년(2018년)에 숭실대학교 최고의 동아리 SCCC가 우리에게 시비를 걸었던 적이 있는데, 그냥 두고 볼 수 없었던 저는 서강대학교가 아직 못 푼 문제들을 정리해 두는 서비스를 간단히 만들었습니다. 그 때 만들어 두었던 문제 데이터베이스를 수정해 ‘문제 난이도’라는 칼럼을 하나 만들고, 투표하면 값을 넣는 식으로 구현했습니다. 당연히 한 명만 투표가 가능했습니다.

하지만 제가 어렵다고 생각한 문제를 최고의 임원 raararaara 선배께서는 쉽다고 생각하실지도 모르는 일입니다. 한 명만 투표할 수 있는 건 뭔가 아닌 거 같습니다. 여러 명이 투표할 수 있게 하되 최종 문제 난이도는 여러 명의 투표값의 평균으로 하기로 계획했습니다. 이를 구현하려면 생각해야 될 사항들은 아래와 같습니다.

  • 투표를 저장하는 데이터베이스 구조는 어떻게 해야 할까? 기존 투표도 수정할 수 있어야 하고…
  • 내가 투표했다고 치면, 투표한 사람이 진짜 shiftpsh인지 아닌지는 어떻게 검증할 수 있을까? 클라이언트는 절대 믿으면 안 되니까 페이지에서 유저네임을 그냥 뽑아오는 방법은 안 될 텐데… (실제로 개발자 도구를 열어 HTML을 조작한다면 이 방법은 정말 쉽게 파훼가 가능합니다)

데이터베이스 구조는 그다지 어렵지 않았습니다. 유저와 문제 번호마다 하나의 난이도 값이 있는 테이블을 새로 만들었습니다. 투표한 사람을 검증하는 일은 생각을 해 봐야 했습니다. 당시에는 임원들만 난이도 투표를 하게 할 생각이었어서 큰 고민은 아니었습니다. 후술하겠습니다.

티어 계산

[속보] ICPC Team 학회장 임원 디스코드 유출
 

임원 분들과 열심히 난이도를 매긴 결과 600문제 정도에 난이도가 붙게 되었습니다. 전체 문제의 4%밖에 안 되지만 다들 많이 푸신 문제들 위주로 매겼다보니 이 정도면 티어 계산을 해도 되겠다는 생각이 들었습니다.

티어를 계산하려면 고려해야 될 것들에는 이런 것들이 있습니다.

  • 경험치 테이블. 레벨 업 기준들과 문제당 경험치. 문제 난이도와 티어는 각각 30단계씩이 있습니다. 어려울수록 경험치를 많이 주고 싶지만 한 티어 높은 문제를 풀었다고 보상을 엄청 많이 주긴 좀 그렇고, 그렇다고 브론즈 5 문제만 엄청 풀어서 플래티넘 가게 하고 싶진 않았습니다.
  • 사용자가 푼 문제 정보 가져오기: 한 단어로 크롤링입니다. BOJ는 사이트에 부담이 가는 크롤링을 허용하지 않고 있습니다. 지금은 백준님께서도 이 사이트의 존재를 알고 계시지만 당시에는 비밀스럽게 진행했던 프로젝트였어서 BOJ에 최대한 요청을 적게 보내면서 크롤링을 해야 했습니다.
  • 사용자가 푼 문제들의 정보를 저장하는 데이터베이스의 구조도 생각해야 했습니다.

초기에는 난이도가 한 단계 올라가면 받는 경험치가 1.4배가 되도록 테이블을 설정했습니다. 레벨 업 조건은 총 경험치가 (전 티어 경험치) + (현 티어와 같은 난이도의 문제를 풀면 주는 경험치) * (상수)로 정했습니다. 현재는 조금 다르게 정해져 있습니다.

문제 난이도가 내려가지 않는 한 티어가 떨어질 일도 없습니다. 티어가 떨어질 일이 별로 없다는 것은 어려운 문제에 많이 도전할 충분한 동기 부여가 됩니다.

서강대학교 랭킹

테이블은 잘 정했지만 크롤링이 문제였습니다. 일단 BOJ에 등록되어 있는 서강대학교 구성원은 당시 약 390명이었습니다.

코틀린으로 짠 크롤링 프로그램은 문제 리스트 전체(약 160페이지)와 서강대학교 구성원 전체를 파싱합니다. 한 번 실행에 총 550번의 리퀘스트를 보내는 셈입니다. 실시간성을 위해 1분에 1번 업데이트한다고 생각하면 하루에 BOJ 서버에 792,000개의 리퀘스트를 날린다는 계산이 나왔습니다. 이건 밴 당할 게 분명합니다.

그래서 일단 실시간성을 포기하고 1시간에 1번 업데이트하는 것으로 정했습니다. 하루 13,200개의 리퀘스트는 여전히 많지만, 79만 개보단 훨씬 적기 때문에 ‘음.. 문제 열심히 푸는 사람이라면 하루에 리퀘스트 1만 개 정도는 보낼 수 있지 않을까?'(불가능합니다) 같은 막연한 생각으로 cron 태스크를 만들었습니다. 1시간에 1번씩 잘 돌아갔습니다.

어떻게 이걸 효율을 높일 수 있지

그런데 예상하지 못한 문제가 또 있었습니다. 파싱은 잘 됐는데, 데이터베이스에 푼 문제들을 등록하는 게 너무 오래 걸렸습니다. 문제를 많이 푼 순으로 위에서 15명이 푼 문제 정보를 데이터베이스에 등록하는 데 무려 12분이 걸렸습니다. 54문제를 등록하는 데 1초 걸린 셈입니다. 뭔가 방법이 잘못되었다는 걸 직감했습니다.

트위터 찬스를 썼습니다.

무려 새벽 1시 반에 트윗을 남겼음에도 불구하고 트위터에 인생을 파신 개발자 분께서 바로 대답해 주셨습니다.

하지만 A는 문자열이었습니다. 저는 문자열이 primary key가 될 리가 없다고 생각하고 ‘A가 스트링이죠’라고 답글을 보냈습니다. primary key와 인덱스가 여러 칼럼에 걸릴 수 있다는 것도 몰랐습니다. 답글로 얻어맞게 됩니다.

그냥 제가 SQL을 모르는 거였습니다. 당장 유저명과 문제 번호에 primary key, unique, index를 걸었고 쿼리 속도가 초당 150문제 정도로 개선되었습니다.

쿼리 속도가 세 배 개선되었습니다

PK를 적용하고 나니 서강대학교 전체를 업데이트하는 데엔 6분 가량이 걸리게 되었습니다. 여전히 조금 느렸지만, 서강대학교만 쓰던 당시로서는 만족할 수 있었던 성능이었기에 나중에 생각하기로 했습니다.

푼 문제들을 파싱했으니 난이도 순으로 정렬된 유저 페이지를 만들 수 있을 거 같아서 이것도 만들었습니다. CSS는 ask.shiftp.sh의 것을 가져와서 개조했기 때문에 만드는 데 오래 걸리진 않았습니다. 이거 발전시키면 개인적으로 프레임워크같이 쓸 수 있을 거 같다는 생각도 하는 중입니다.

초기 푼 문제 목록 페이지

이 날 랭킹 페이지도 새로 만들었습니다.

본인 확인

앞에서 난이도 투표를 한 사람이 누군지 검증할 수 없는 문제가 있었다고 언급했습니다. 이를 해결하기 위해 일단 solved.ac에 따로 회원가입 시스템을 만들었습니다.

플러그인에서 로그인하면 서버에서 토큰을 발급해 주고, 이를 로컬에 저장해 뒀다가 문제 난이도를 매길 때 인증 정보로서 서버에 다시 보내는 식으로 구현하는 것으로 해결했습니다.

문제는 solved.ac에 가입하는 사람이 BOJ의 그 사람이 맞는지 아닌지 검증하기가 곤란하다는 건데, 디스코드에 있는 외국 알고리즘 문제해결 커뮤니티 CP Community의 한 봇에서 영감을 얻을 수 있었습니다.

CP Community는 러시아의 Codeforces 플랫폼을 기반으로 활동하는데, 이 디스코드 서버는 특정 문제에 컴파일 에러가 나는 코드를 제출하게 해서 본인임을 확인합니다.

초기 본인 인증

BOJ에는 소스를 공개적으로 공유할 수 있는 기능이 있습니다. 이 기능을 이용해 공유된 소스는 문제를 풀지 않았거나 심지어 로그인하지 않았더라도 누구나 열람할 수 있습니다.

따라서 틀려도 부담되지 않을 만한 문제를 골라 서버에서 랜덤하게 생성한 문자열을 입력하고, 그 소스를 공유해 소스 주소를 서버에 보내면 서버가 이를 검증하는 방식으로 본인인지 아닌지는 확인할 수 있습니다. 이를 통해 투표하는 사람이 누구인지에 대한 걱정도 해결했습니다.

이렇게 학회 내부에서 사용할 서비스가 완성되었습니다.

한계

이 서비스는 분명한 한계가 있었습니다. 기술적인 한계는 아닙니다. 서강대학교는 사람이 적어서 많은 사람들이 학교 리스트에 등록될 리 없기 때문입니다. 다만 사람이 적기 때문에 난이도 의견 자체가 적었습니다. 활발하게 난이도를 매기는 사람들은 저를 포함한 임원들이나 문제를 많이 풀어본 사람들 뿐이었고, 그분들마저도 일정 수준 이상의 문제에 난이도를 매기는 건 역부족이었습니다.

해결방법은 서강대 밖의 많은 고수들을 끌어모으는 것이었습니다. 하지만 많아봐야 고작 100명 정도의 학회원들이 사용하는 서비스를 수천 명이 사용하는 서비스로 개조하기 위해서는 생각을 많이 해야 했습니다.

이번 포스트에서는 ‘제가 SQL을 정말 몰랐네요’, ‘본인확인 이렇게 하는데 어때요 멋지죠?’ 말고 별다른 기술적인 내용을 다루지 않아 결국 일상 포스팅 같은 게 되었지만, 다음 포스트에서는 solved.ac를 수천 명이 사용하는 서비스로 개조하면서 한 생각들을 다뤄볼 생각입니다.